REDUCTION OF REAL POWER LOSS AND VOLTAGE STABILITY ENHANCEMENT BY SALMO SALAR ALGORITHM

Authors

  • Dr. K. Lenin Researcher, Jawaharlal Nehru Technological University Kukatpally, Hyderabad 500 085, India

DOI:

https://doi.org/10.29121/granthaalayah.v5.i5.2017.1867

Keywords:

Modal Analysis, Optimal Reactive Power, Nature-Inspired Algorithm, Salmo Salar, Transmission Loss

Abstract [English]

This paper presents a new Salmo Salar (SS) algorithm for Solving Optimal Reactive Power Dispatch Problem. Salmo Salar Algorithm imitates the annual natural events happening in the North America. Millions of Salmo salar move about through mountain streams for spawning. Proposed SS algorithm utilizes the behaviour of Salmo Salar to solve the optimal reactive power problem. Proposed (SS) algorithm has been tested in standard IEEE 30 bus test system and simulation results shows clearly about the good performance of the proposed algorithm in reducing the real power loss and enhancing the voltage stability.

Downloads

Download data is not yet available.

References

O.Alsac,and B. Scott, “Optimal load flow with steady state security”,IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y ,Paru Y M , Oritz J L –A united approach to optimal real and reactive power dispatch , IEEE Transactions on power Apparatus and systems 1985: PAS-104 : 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A.Monticelli , M .V.F Pereira ,and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

Deeb N ,Shahidehpur S.M ,Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2) : 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson ,’Network consrained reactive power control using linear programming, ‘ IEEE Transactions on power systems PAS -99 (4) ,pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee ,Y.M Park , and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches” , IEE Proc; 131C,(3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming” , Electr.Power Syst.Res, Vol.26, pp.1-10,1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

C.A. Canizares , A.C.Z.de Souza and V.H. Quintana , “ Comparison of performance indices for detection of proximity to voltage collapse ,’’ vol. 11. no.3 , pp.1441-1450, Aug 1996 .

Berizzi.C.Bovo,M.Merlo,andM.Delfanti,(2012), “A GA approach to compare ORPF objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194.

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation.Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234

A.Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare orpf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014

C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003

P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032

B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 – 851, may 2000. DOI: https://doi.org/10.1109/59.867183

W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 – 918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716

W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminterior point method for optimal reactive power flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.

J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimal reactive power-flow model and its algorithm for ac-dc systems,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb. 2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387

F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.

Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018

A.Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019

Mozaffari, A. Fathi, S. Behzadipour, The Great Salmon Run: A novel bio-inspired algorithm for artificial system design and optimization, International Journal of Bio-Inspired Computation 4 (2012) 286-301.

Fathi, A. Mozaffari, Modeling a shape memory alloy actuator using an evolvable recursive black-box and hybrid heuristic algorithms inspired based on the annual migration of salmons in nature, Applied Soft Computing 14 (2014) 229-251. DOI: https://doi.org/10.1016/j.asoc.2013.03.019

L.F. Sundstom, E. Petersson, J.I. Johnsson, Heart rate responses to predation risk in Salmo trutta are affected by the rearing environment, International Journal of Fish Biology 67(2005) 1280–1286. DOI: https://doi.org/10.1111/j.1095-8649.2005.00822.x

E.B. Taylor, A review of local adaptation in Salmonidae, with particular reference to Atlantic andPacific salmon, International Journal of Aquaculture 98(1991) 185–207. DOI: https://doi.org/10.1016/0044-8486(91)90383-I

Wu Q H, Ma J T. “Power system optimal reactive power dispatch using evolutionary programming”, IEEE Transactions on power systems 1995; 10(3): 1243-1248 . DOI: https://doi.org/10.1109/59.466531

S.Durairaj, D.Devaraj, P.S.Kannan ,“Genetic algorithm applications to optimal reactive power dispatch with voltage stability enhancement”, IE(I) Journal-EL Vol 87,September 2006.

D.Devaraj , “Improved genetic algorithm for multi – objective reactive power dispatch problem”, European Transactions on electrical power 2007 ; 17: 569-581. DOI: https://doi.org/10.1002/etep.146

P. Aruna Jeyanthy and Dr. D. Devaraj “Optimal Reactive Power Dispatch for Voltage Stability Enhancement Using Real Coded Genetic Algorithm”, International Journal of Computer and Electrical Engineering, Vol. 2, No. 4, August, 2010 1793-8163. DOI: https://doi.org/10.7763/IJCEE.2010.V2.220

Downloads

Published

2017-05-31

How to Cite

Lenin, K. (2017). REDUCTION OF REAL POWER LOSS AND VOLTAGE STABILITY ENHANCEMENT BY SALMO SALAR ALGORITHM. International Journal of Research -GRANTHAALAYAH, 5(5), 349–360. https://doi.org/10.29121/granthaalayah.v5.i5.2017.1867

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>