MORPHOLOGICAL CHARACTERISTICS AND WATER STATUS OF SOME TUNISIAN BARLEY GENOTYPES SUBMITTED TO WATER STRESS

Authors

  • Mansouri, S. Field Crops Laboratory, National Institute of Agricultural Research, TUNISIA
  • Radhouane, L. Agricultural Science and Technology Laboratory, National Institute of Agricultural Research, TUNISIA

DOI:

https://doi.org/10.29121/granthaalayah.v3.i5.2015.3016

Keywords:

Barley, Water Stress, Leaf Water Potential, Relative Water Content, Yield, Height, Leaf Surface, Stomata

Abstract [English]

Tunisia has been qualified as a country vulnerable to climate change that will be unregistered a great drop of annual rainfall and an increase of evaporation.  Response strategies of agriculture to drought will be critical because drought is one of the major abiotic stresses which adversely affect crop growth and yield. Among strategies to be developed to cope with the effect of climate change, recourse of genetic diversity and new varietal creation can be a solution among other methods.


In this study, four barley genotypes were cultivated in semi-controlled conditions and submitted to three levels of water stress.  Data were recorded on number of grain per plant (NGP), one thousand grains weight (PMG), total leaf surface (TLS), plant height (HAT), stomata density (DS), leaf water content (RWC) and leaf water potential (LWP).


Results showed that morphological characteristics (HAT, TLS, DS), yield components (NGP, PMG) and water status (LWP, RWC) of barley genotypes were decreased significantly. However, moderate water deficit didn’t affect significantly the most of parameters studied. Study had demonstrated also that barley genotypes developed different strategies and mechanisms to cope with water deficit, based essentially on their osmotic adjustment capacity.

Downloads

Download data is not yet available.

References

Vicente-Serrano, S. M. (2006). Spatial and temporal analysis of droughts in the Iberian Peninsula (1910–2000).Hydrol. Sci. J. 51(1), 83-97. DOI: https://doi.org/10.1623/hysj.51.1.83

Giorgi, F. (2006). Climate change hot-spots. Geophysical Resources Letters 3, 707-715. DOI: https://doi.org/10.1029/2006GL025734

IPCC. (2013).“Summary for policy makers”in Climate Change2013:The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds T.F. Stocker, D. Qin,G.- K. Plattner, M.Tignor, S.K.Allen, J.Boschunget al. (Cambridge:Cambridge University Press), 3–29.

Elrafy, M. (2009). Impact of Climate Change: Vulnerability and Adaptation of Coastal Areas. Report of the Arab forum for Environment and Development.Mostafa K. Tolba and Najib W. Saab Eds., AFED, 181 pp.

P.N.U. (2008). Climate change and energy in the Mediterranean. Plan Bleu. Centre d'ActivitésRégionales. Sophia Antipolis.Juillet 2008, 44 pp.

Johnson, S.L.,Kuske, C.R., Carney, T.D., Housman, D.C., Gallegos-Graves, L.V. and Belnap, J.(2012). Increased temperature and altered summer precipitation have differential effects on biological soil crusting dry land ecosystem. Global Change Biol. 18, 2583- 2593. DOI: https://doi.org/10.1111/j.1365-2486.2012.02709.x

McCluney, K.E.,Belnap, J, Collins, S.L., González, A.L., Hagen, E.M. and Nathaniel Holland, J. (2012).Shifting species interactions in terrestrial dry land ecosystems under altered wateravailability and climate change.Biol.Rev.Camb. Philos.Soc. 87, 563–582.

Magano, T.; Hoshikawa, K.; Donma, S.; Kume, T.; Onder, S.; Ozekici, B.; Kanber, R. and Watanabe, T.(2007). Assessing adaptive capacity of large irrigation districts towards climate change and social change with irrigation management performance model.In: N. Lamaddalena, C. Bogliotti, M. Todorovic and A. Scardigno (eds.). Water Saving in Mediterranean Agriculture and Future Research Needs (Proc. of the International Conf. of WASAMED project, 14-17 February 2007,Valenzano, Italy). Option Mediterranean Series, CIHAM, B 56 (1), 293-302.

Jaleel, C.A., Manivannan, P., Wahid, A., Farooq, M., Somasundaram, R. and Panneerselvam, R.(2009). Drought stress in plants: a review on morphological characteristics and pigments composition. Int. J. Agric. Bio. 11, 100–105.

Richard, M. (2002). Drought and climatic change: implications for the west, Department ofagricultural and Resource Economics Oregon state university, December 2002. 5 pp.

Twomlow, S., Francis, T., Mugabe, M. M., Delve, R., Durton, N. and Carberry, P.(2008). Building adaptive capacity to cope with increasing vulnerability due to climatic change in Africa – A new approach.Physics and Chemistry of the Earth, Parts A/B/C 01/2008; DOI:10.1016/j.pce.2008.06.048. DOI: https://doi.org/10.1016/j.pce.2008.06.048

Food and Agriculture Organization. (2013). World Agriculture: Towards 2015/2030. An FAO perspective, retrieved September 2013. 99 pp.

Bchini, H., Ben Naceur, M., Sayar, R., Khemira, H. and Ben Kaab-Bettaieb, L. (2010). Genotypic differences in root and shoot growth of barley (Hordeumvulgare L.) grown under different salinity levels. Hereditas 147, 114–122

Abdellaoui, R., Kadri, K., Ben Naceur, M. and Bettaib Ben Kaab, L. (2010). Genetic diversity in some Tunisian barley landraces based on RAPD markers. Pakistan Journal of Botany 42, 3775 3782.

Khakimov, B., Jespersen, B.M. and Engelsen,S.B. (2014). Comprehensive and Comparative Metabolomic Profiling of Wheat, Barley, Oat and Rye Using Gas Chromatography-Mass Spectrometry and Advanced Chemometrics. Foods 3, 569-585 DOI: https://doi.org/10.3390/foods3040569

Abidi, I.,Mansouri, S., Radhouane, L., Ksouri, R., El Felah, M. and Bouzid, S.(2015). Phenolic, Flavonoid and Tannin Contents of Tunisian Barley Landraces. International Journal of Agriculture Innovations and Research 3(5), 1417-1423.

Ben Naceur, A., Chaabane, R.,El-Faleh, M., Abdelly, C., Ramla, D., Nada, A., Sakr, M. and Ben Naceur, M.(2012). Genetic diversity analysis of North Africa’s barley using SSR markers. Journal of Genetic Engineering and Biotechnology 10, 13–22 DOI: https://doi.org/10.1016/j.jgeb.2011.12.003

Castro-rubio, A, Garcia, M. C. and Marina, M. L.(2006). Rapid separation of soybean and cereal (wheat, corn, and rice) proteins in complex mixtures: Application to the selective determination of the soybean protein content in commercial cereal-based products.AnalyticaChimicaActa 558, 28–34. DOI: https://doi.org/10.1016/j.aca.2005.10.076

Lahouar, L., El Arem, A., Ghrairi, F., Chahdoura, H., Ben Salem, H., ElFelah, M. and Achour, L. (2014). Phytochemical content and antioxidant properties of diverse varieties of whole barley (Hordeumvulgare L.) grown in Tunisia. Food Chemistry 145, 578–583

O’Neal, M., Douglas, A.L. and Rufus, I.(2002). An inexpensive, Accurate Method for Measuring Leaf Area and Defoliation through Digital Image Analysis, Journal of Entomology 95(6), 1190-1194 DOI: https://doi.org/10.1603/0022-0493-95.6.1190

Hensen, I.E.(1982). Osmotic adjustment to water stress in pear millet (Pennisetumamericanum (L.) Leake) in a controlled environment. J. Exp. Bot. 33(132), 78–87

Scholander, P.F., Humme, H.T., Bradstreet, E.D. and Hennigsen, A. (1965). Sap pressure in vascular plants. Science 148, 339–346. DOI: https://doi.org/10.1126/science.148.3668.339

Walls, G.W., Garcia, R.L., Wechsung, F. and Kimball, B.A.(2011). Elevated atmospheric CO2 and drought effects on leaf gas exchange properties of barley. Agriculture, Ecosystems and Environment 144, 390–404 DOI: https://doi.org/10.1016/j.agee.2011.07.006

Marok, M.A.,Tarrago, L.,Ksas, B., Henri, P., Abrous-Belbachire, O., Havaux, M. and Rey, P.(2013). A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. Journal of Plant Physiology 170, 633– 645 DOI: https://doi.org/10.1016/j.jplph.2012.12.008

Schittenhelma, S., Kraft, M. and Wittich, K.P.(2014). Performance of winter cereals grown on field-stored soil moisture only.Europ. J. Agronomy 52, 247–258.

Haddadin, M.F.(2015). Assessment of Drought Tolerant Barley Varieties under Water Stress. International Journal of Agriculture and Forestry 5(2), 131-137.

Neumann, K., Klukas, C., Friedel, S., Rischbeck, P., Chen, D., Entzian, A., Stein, N., Graner, A. and Kilian, B.(2015). Dissecting spatiotemporel biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant, Cell, Environment, doi: 10.1111/pce.12516, in press. DOI: https://doi.org/10.1111/pce.12516

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D. and Basra, S.M.A. (2009). Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29, 185-212. DOI: https://doi.org/10.1051/agro:2008021

Aydinsakir, K., Erdal, S.,Buyuktas, D., Bastug, R. and Tokera, R.(2013). The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes. Agricultural Water Management 128, 65– 71 DOI: https://doi.org/10.1016/j.agwat.2013.06.013

Sammis, T.W., Kratky, B.A. and Wu, I.P.(1988). Effects of limited irrigation on lettuce and Chinese cabbage yields.Irr. Sci. 9, 187–198 DOI: https://doi.org/10.1007/BF00275431

Eppel, A.; Kerenb,N.; Salomonb, E.; Volisc, S. and Rachmilevitcha, S. (2013).The response of Hordeumspontaneum desert ecotype to drought and excessive light intensity is characterized by induction of O2 dependent photochemical activity and anthocyanin accumulation. Plant Science 201– 202, 74– 80 DOI: https://doi.org/10.1016/j.plantsci.2012.12.002

Imrul M. A.; Dai, H.; Zheng, W.; Cao, F.; Zhang, G.;Sun, D. and Wu, F.(2013).Genotypic differences in physiological characteristics in the tolerance to droughtand salinity combined stress between Tibetan wild and cultivated barley.Plant Physiology and Biochemistry 63, 49-60 DOI: https://doi.org/10.1016/j.plaphy.2012.11.004

Latif, H.H.(2014). Physiological responses of Pisumsativum plant to exogenous ABA application under drought conditions. Pak. J. Bot. 46(3), 973-982.

Banon, S.; Ochoa, J.; Franco, J. A.; Alarcon, J. J. and Sanchez-Blanco, M. J. (2006). Hardening of oleander seedlings by deficit irrigation and low air humidity. Environmental and Experimental Botany 56, 36-43. DOI: https://doi.org/10.1016/j.envexpbot.2004.12.004

Crépin, B. P. ;Désiré, A.A. and Bernard, G.D. (2001). Interaction eau d’irrigationsur des variétés de canne à sucre en conditions de rationnementhydrique. Cahiers d’Agriculture 10(4), 243-253.

Radhouane, L. (2008). Corrélation entre le stade germination et le stadeadulte en présence de stress hydrique chez quelquesécotypesautochtonestunisiens de mil (Pennisetumglaucum L. R. Br.) ComptesRendusBiologies 331(8), 623- 630.

Zooleh, H.H.; Jahansooz, M.R.; Yunusa, I.; Hosseini, S.M.B.; Chaichi1, M.R. and Jafari, A.A.(2011). Effect of alternate irrigation on root-divided Foxtail Millet (Setariaitalica). Australian Journal of Crop Sciences 5(2), 205-213.

Levitt, T.; 1980. Response of Plant Environment Stress to Water, Radiation, Salt and Other Stresses.Physiol.Ecol. 2nd Edn.Acad.PressInc.Orlando, Florida USA, pp: 365-488.

Luvaha, E.; Netondo, G.W. and Ouma, G.(2008). Effect of water deficit on the physiological and morphological characteristics of Mango (Mangiferaindica) rootstock seedlings. American J. Plant Physiol. 3(1), 1-15. DOI: https://doi.org/10.3923/ajpp.2008.1.15

Coopman,R.E.; Jara, J.C.;Escobar, R.; Corcuera, L.J. and Bravo, L.A.(2010). Genotypic variation in morphology and freezing resistance of Eucalyptus globulus seedlings subjected to drought hardening in nursery.Electronic Journal of Biotechnology 13(1), 1-10 DOI: https://doi.org/10.2225/vol13-issue1-fulltext-10

Al-Temimi, H.N.; Al-Shahwany, A. W. and Alsaadawi, I.S. (2013).Screening of bread wheat cultivars (Triticumaestivum L.) to water deficit stress under field conditions.Iraqi Journal of Science 54(3), 577-584.

Bouchabke, O.; Chang, F.; Simon, M.; Voisin, R.; Pelletier, G. and Durand-Tardif, M.(2008). Natural variation in Arabidopsis thaliana as a tool for highlighting differential drought responses. PLoS ONE 3 (2): e1705.

Franks, P.J.; Drake, P.L. and Beerling, D.J.(2009). Plasticity in maximum stomatal conductance con strained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Plant Cell Environ. 32, 1737–48. DOI: https://doi.org/10.1111/j.1365-3040.2009.002031.x

Bandurska, H.; Niedziela, J. and Chadzinikolau, T.(2013). Separate and combined responses to water deficit and UV-B radiation. Plant Science 213, 98– 105 DOI: https://doi.org/10.1016/j.plantsci.2013.09.003

Franks, P.J. and Farquhar, G.D.(2007). The Mechanical Diversity of Stomata and Its Significance in Gas-Exchange Control. Plant Physiol. 143, 78-87 DOI: https://doi.org/10.1104/pp.106.089367

Drake, P.L.; Froend, R.H. and Franks, P.J.(2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. J. Exp. Bot. 64, 495–505. DOI: https://doi.org/10.1093/jxb/ers347

Woodward, F. and Kelly, C.K. (1995). The influence of CO2 concentration on stomatal density.New Phytol.131, 311–27. DOI: https://doi.org/10.1111/j.1469-8137.1995.tb03067.x

Martinez, J.P.; Silva, H.; Ledent, J.F. and Pinto, M. (2007). Effect of drought stress on the osmotic adjustment, cell wall elasticity and cell volume of six cultivars of common beans (Phaseolus vulgaris L.). European Journal of Agronomy26, 30–38. DOI: https://doi.org/10.1016/j.eja.2006.08.003

Benaouf, Z.; Miloudi, A. and Belkhodja, M.(2014). The physiological and behavioural responses of argan seedlings (Arganiaspinosa (L.)Skeels) to water stress in the semi arid Western Algeria.Int. J.Plant Physiol. Biochem. 6(5), 44-55. DOI: https://doi.org/10.5897/IJPPB2014.0203

Spence, R.D., H. Wu, P.J.H. Sharpe and K.G. Clark (1986). Water stress effects on guard cell anatomy and the mechanical advantage of the epidermal cells. Plant Cell Environ. 9, 197-202

Hetherington, A.M. and Woodward, F. (2003).The role of stomata in sensing and driving environmental change.Nature 424, 901–8. DOI: https://doi.org/10.1038/nature01843

Russo, S.E.; Cannon, W.L.; Elowsky, C.; Tan, S. and Davies, S.J. (2010). Variation in Leaf Stomatal Traits of 28 Tree Species in Relation to Gas Exchange along an Edaphic Gradient in a Bornean Rain Forest. American Journal of Botany 97, 1109-1120. DOI: https://doi.org/10.3732/ajb.0900344

Pearce, D.W.; Millard, S.; Bray, D.F. and Rood, S.B.(2006). Stomatal characteristics of riparian poplar species in a semi-arid environment.Tree Physiol. 26, 211–8. DOI: https://doi.org/10.1093/treephys/26.2.211

Belhadj, S.; Derridj, A.; Moriana, A.; Gijon, M.D.C.; Mevy, J.P. and Gauquelin, T.(2011). Comparative Analysis of Stomatal Characters in Eight Wild Atlas Pistachio Populations (PistaciaatlanticaDesf.;Anacardiaceae). International Research Journal Plant Science 2, 60-69.

Bagci, S.A.; Ekiz, H.; Yilmaz, A. and Cakmak, L.(2007). Effects of Zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J. Agron.Crop Sci., 193, 198-205. DOI: https://doi.org/10.1111/j.1439-037X.2007.00256.x

Karim, M.R.; Zhang, Y.Q.; Zhao, R.R. and Chen, X.P.(2012). Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant Nutr. Soil Sci. 175, 142-151. DOI: https://doi.org/10.1002/jpln.201100141

Parida, A.K. and Das, A.D.(2005). Salt tolerance and salinity effects on plants: a review.Ecotoxicol. Environ. Saf., 60, 324–349 DOI: https://doi.org/10.1016/j.ecoenv.2004.06.010

Boyer, J.S. and Westgate, M.E.(2004). Grain yields with limited water. J. Exp. Bot., 55, 2385–2394. DOI: https://doi.org/10.1093/jxb/erh219

Guttieri, M. J. ; Stark, J. C. ; O’Brien, K. and Souza, E. (2001). Relative sensitivity of Spring wheat grain. Yield and quality parametersto,moisture deficit. Crop Sci. 41, 327-335. DOI: https://doi.org/10.2135/cropsci2001.412327x

Cakir, R. (2004).Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Research 89, 1-16 DOI: https://doi.org/10.1016/j.fcr.2004.01.005

De Mezer, M.; Turska-Taraska, A.; Kaczmarek, Z.; Glowacka, K.; Swarcewicz, B.; and Rorat, T.(2014).Differential physiological and molecular of barley genotypes to water deficit. Plant Physiology and Biochemistry 80, 234-248. DOI: https://doi.org/10.1016/j.plaphy.2014.03.025

Koyro, H.W.(2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantagocoronopus (L.). Environ. Exp.Bot. 56(2),136–146

González, A. and Ayerbe, L. (2011). Response of coleoptiles to water deficit: growth, turgor maintenance and osmotic adjustment in barley plants (HordeumvulgareL.) AgriculturalSciences 2(3), 159-166. DOI: https://doi.org/10.4236/as.2011.23022

Meloni, D.A.; Gulotta, M.R.; Martinez, C.A. and Oliva, M.A. (2004). The effects of salt stress on growth, nitrate reduction and proline and glycinebetaine accumulation in Prosopisalba. Braz. J.Plant Physiol. 16(1), 39–46

Al Hakimi, A.; Monneveux, P. and Galiba, G.(1995). Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from Triticumpolonicum into Triticumdurum . J. Genet. Breed. 49, 237–244

Al Dakheel, A.J.(1991). Osmotic adjustment a selection criterion for drought tolerance, in: E. Acevedo, A.P. Conesa, P. Monneveux, J.P. Srivastava (Eds.), Physiology breeding of winter cereals for stressed Mediterranean environments, ÉditionsInra, Paris, 1991, pp. 337–367.

Bajji, M.; Lutts, S. and Kinet, J.M.(2000). La résistance au stress hydrique chez le blédur :Comparaison des comportements au niveaucellulaire et au niveau de la planteentière.OptionsMediterr. Ser. A 40, 227–231.

Hsissou, D. (1994). Sélection in vitro etcaractérisation de mutants de blédurtolérants à la sécheresse, thèse de doctorat, faculté des sciences, universitécatholique de Louvain, Louvain la-Neuve, Belgique, 167 p.

Monneveux, D.(1997). La génétique face au problème de la tolérance des plantescultivées à la sécheresse :espoirs et difficultés, Sécheresse 8 (1), 29–37.

Radhouane, L. (2008). Caractéristiqueshydriques du mil (Pennisetumglaucum (L.) R. Br.) enprésence de contrainteshydriques. C. R. Biologies 331, 206–214

Haddadin, M.F. (2015). Assessment of Drought Tolerant Barley Varieties under Water Stress. International Journal of Agriculture and Forestry 5(2), 131-137

Harb, A. M. and Samarah, N.H.(2015). Physiological and Molecular Responses to Controlled Severe Drought in Two Barley (HordeumVulgare L.)Genotypes. Journal of Crop Improvement 29 (1), 82-94. DOI: https://doi.org/10.1080/15427528.2014.976802

Bartels, D. and Sunkar, R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23-58 DOI: https://doi.org/10.1080/07352680590910410

Akash, M.; Al-abdallat, A.; Saoub, H. and Ayad., J.(2009). Molecular and field comparison of selected barley cultivars for drought tolerance. J. New Seeds 10, 98–111. DOI: https://doi.org/10.1080/15228860902901710

Vaezi, B.; Bavei, V. and Shiran, B.(2010). Screening of barley genotypes for drought tolerance by agro-physiological traits in field condition.Afr. J. Agric. Res. 5, 881- 892.

Thameur, A.; Lachiheb, B. and Ferchichi, A.(2012). Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia. J. Environ. Manag.113, 495-500 DOI: https://doi.org/10.1016/j.jenvman.2012.05.026

Downloads

Published

2015-05-31

How to Cite

Mansouri, & Radhouane. (2015). MORPHOLOGICAL CHARACTERISTICS AND WATER STATUS OF SOME TUNISIAN BARLEY GENOTYPES SUBMITTED TO WATER STRESS. International Journal of Research -GRANTHAALAYAH, 3(5), 60–76. https://doi.org/10.29121/granthaalayah.v3.i5.2015.3016