• V. Ananthaswamy Department of Mathematics, The Madura College, Madurai-625011, Tamil Nadu, India
  • M. Subha Department of Mathematics, Madurai SivakasiNadars Pioneer Meenakshi Women’s College Poovanthi, Sivagangai District, Tamil Nadu, India



Thermal Explosions, Kinetics Reactions, Non-Linear Boundary Value Problem, Homotopy Analysis Method, Numerical Simulation

Abstract [English]

Analytical solutions for the strongly exothermic decomposition of combustible material are discussed in this paper.  Combustible material uniformly distributed between symmetrically heated parallel plates under Sensitized, Arrhenius and Bimolecular reaction rates are also discussed neglecting consumption of material.  Approximate analytical expressions of steady state temperature fields are derived by using Homotopy analysis method (HPM) for various values of relevant dimensionless parameters. Analytical results are compounded with perturbation technique and numerical simulation. Analytical results are coinciding with numerical simulation and agreement is noted. The present method simple, less computational and applicable for solving strongly non-linear initial and boundary value problems.


Download data is not yet available.


O.D. Makinde, Hermite-Pade approach thermal stability of reacting masses in a slab with

asymmetric convective cooling, Journal of the Franklin Institute 349, 2012, 957–965.

L.D. Landau, E.M. Lifshitz, in: Fluid Mechanics, Addison-Wesley, Reading, Massachusetts,

, 1959.

J. Bebernes, D. Eberly, in: Mathematical Problems from Combustion Theory, Springer-

Verlag, New York, 1989.

W. Squire, A mathematical analysis of self-ignition, in: B. Noble (Ed.), Application of

Undergraduate Mathematics in Engineering, MacMillan, New York, 18, 1967.

D.A. Frank Kamenetskii, in: Diffusion and Heat Transfer in chemical kinetics, Plenum Press,

New York, 1969.

F. Alhama, A. Campo, The connection between the distributed and lumped models for

asymmetric cooling of long slabs by heat convection, International Communications in Heat

and Mass Transfer 28 (1) (2001) 127–137. DOI:

M.B. Zaturska, W.H.H. Banks, Thermal explosion with variable thermal conductivity:

criticality and its disappearance, IMA Journal of Applied Mathematics 34 (1985) 73–82. DOI:

O.D. Makinde, Exothermic explosions in a Slab: A case study of series summation technique,

International Communications in Heat and Mass Transfer 31 (8) (2004) 1227–1231. DOI:

O. D. Makinde, Exothermic explosions in a slab: A case study of series summation technique, [10] J. Bebernes, D. Eberly, Mathematical problems from combustion theory, Springer-Verlag,

New York, 1989.

D. A. Frank Kamenetskii, Diffusion and Heat Transfer in chemical kinetics, Plenum Press,

New York 1969.

O. D. Makinde, Hermite–Pade_ approach to thermal stability of reacting masses in a slab

with asymmetric convective cooling, Journal of the Franklin Institute 349, 2012, 957-965. DOI:

S. J. Liao, The proposed Homotopy analysis technique for the solution of non-linear

problems, Ph.D. Thesis, ShanghaiJiaoTongUniversity, 1992.

S. J. Liao, An approximate solution technique which does not depend upon small

parameters: a special example, Int. J. Non-Linear Mech. 30, 1995, 371-380. DOI:

S. J. Liao, Beyond perturbation introduction to the Homotopy analysis method, 1stedn.,

Chapman and Hall, CRC press, Boca Raton ,336, 2003.

S. J. Liao, On the Homotopy analysis method for nonlinear problems, Appl. Math.

Comput. 147, 2004, 499-513. DOI:

S. J. Liao, An optimal Homotopy-analysis approach for strongly nonlinear differential

equations, Commun. Nonlinear Sci. Numer. Simulat. 15, 2010, 2003-2016.

S. J. Liao, The Homotopy analysis method in non linear differential equations, Springer

and Higher education press, 2012.

S. J. Liao, An explicit totally analytic approximation of Blasius viscous flow problems. Int J

Nonlinear Mech;34, 1999, 759–778. DOI:

S. J. Liao, On the analytic solution of magnetohydrodynamic flows non-Newtonian fluids

over a stretching sheet. J Fluid Mech: 488, 2003, 189–212. DOI:

S. J. Liao, A new branch of boundary layer flows over a permeable stretching plate. Int J

Nonlinear Mech: 42, 2007, 19–30. DOI:

G. Domairry, H. Bararnia, An approximation of the analytical solution of some nonlinear

heat transfer equations: a survey by using Homotopy analysis method, Adv. Studies Theor.

Phys. 2, 2008, 507-518.

Y. Tan , H. Xu ,S. J. Liao, Explicit series solution of travelling waves with a front of Fisher

equation. Chaos Solitons Fractals: 31, 2007, 462–472. DOI:

S. Abbasbandy, Soliton solutions for the FitzhughNagumo equation with the homotopy

analysis method. Appl Math Model: 32, 2008, 2706–2714. DOI:

J. Cheng J, S. J. Liao , R. N. Mohapatra, K. Vajravelu, Series solutions of nano boundary

layer flows by means of the Homotopy analysis method. J Math Anal Appl: 343, 2008, 233– DOI:

T. Hayat, Z. Abbas, Heat transfer analysis on MHD flow of a second grade fluid in a

channel with porous medium. Chaos Solitons Fractals: 38,2008, 556–567. DOI:

T. Hayat, R. Naz, M. Sajid, On the Homotopy solution for Poiseuille flow of a fourth grade

fluid. Commun Nonlinear SciNumerSimul: 15, 2010, 581–589. DOI:

H. Jafari, C. Chun, S. M. Saeidy, Analytical solution for nonlinear gas dynamic Homotopy

analysis method, Appl. Math. 4, 2009, 149-154.

M. S. H. Chowdhury, I. Hashim, solutions of time-dependent Emden-Fowler type equations

by Homotopy perturbation method, Phys. Lett. A., 368, 305-313, 2007. DOI:

Q. K. Ghori, M. Ahmed, A. M. Siddiqui, Application of Homotopy perturbation method to

squeezing flow of a Newtonian fluid, Int. J. Nonlinear. Sci. Numer.Simulat., 8(2), 2007, 179-

J. M. Coyle, J. E. Flaherty, and R. Ludwig. On the stability of mesh equidistribution

strategies for time-dependent partial differential equations. J. Comput.Phys.62,

, 26- 39.

T. Ozis, A. Yildirim, Relationof a Nonlinear Oscillator with Discontinuities, Int. J.

Non-linear. Sci. Numer. Simulat., 8(2), 2007, 243-24.

N. Madden and M. Stynes. A uniformly convergent numerical method for a coupled system

of two singularly perturbed linear reaction-diffusion problems. IMA J. Numer.Anal., 23(4),





How to Cite

Ananthaswamy, V., & Subha, M. (2014). ANALYTICAL EXPRESSIONS FOR EXOTHERMIC EXPLOSIONS IN A SLAB. International Journal of Research -GRANTHAALAYAH, 1(2), 22–37.