APPLICATIONS OF DIFFERENTIAL CALCULUS TO ARCHITECTURE

Authors

  • Edwin Rivera Rivera University of Puerto Rico, Río Piedras Campus
  • Patricia Mattei Ramos University of Puerto Rico, Río Piedras Campus
  • Franchesca M. Carrasquillo Hernández University of Puerto Rico, Río Piedras Campus
  • Nydiaam Vilanova Hernández University of Puerto Rico, Río Piedras Campus

DOI:

https://doi.org/10.29121/granthaalayah.v13.i10.2025.6424

Keywords:

Differential Calculus, Architecture, Structural Optimization, Differential Geometry, Parametric Design, Energy Efficiency

Abstract [English]

Differential calculus constitutes a fundamental mathematical tool in contemporary architectural design and analysis. This documentary research examines the practical applications of differential calculus in architecture, demonstrating how abstract mathematical concepts transform into tangible constructive solutions. The study analyzes the application of mathematical limits to establish design restrictions, guarantee structural safety, and optimize the behavior of high-rise buildings and complex geometries. Derivatives emerge as crucial analytical instruments for calculating curvatures, optimizing organic structures, and analyzing energy efficiency in emblematic works such as the Guggenheim Museum Bilbao. Differential geometry enables the modeling of complex surfaces and non-Euclidean spaces, while integrals facilitate the quantification of geometric properties, structural load analysis, and optimization of thermal behavior in sustainable buildings. The document also explores advanced applications such as multiple integrals, Gaussian series, partial derivatives, and Lebesgue measure theory, evidencing their relevance in parametric design and computational architecture. The results demonstrate that mastery of differential calculus not only improves the technical precision of architectural design but also expands the frontiers of creativity, enabling architects to create habitable, safe, and aesthetically innovative spaces that respond with scientific rigor to contemporary social and environmental needs.

Downloads

Download data is not yet available.

References

Bell, E. T. (1945). Geometric Foundations in Mathematical Analysis. Journal of Mathematical Physics, 24(1), 12–29. https://doi.org/10.1002/j.1538-7305.1945.tb00453.x DOI: https://doi.org/10.1002/j.1538-7305.1945.tb00453.x

Bueno, S., Burgos, M., & Godino, J. D. (2022). Significados Intuitivos Y Formales De La Integral Definida En Formación De Ingenieros. Revista de Educación Matemática, 37(2), 45–62.

Chen, L., & Liu, H. (2022). Análisis De Derivadas Parciales En Mecánica Estructural Arquitectónica. Structural Engineering Review, 45(3), 178–195.

Chen, L., & Liu, H. (2022). Análisis De Tensiones Mediante Integral De Lebesgue En Arquitectura Estructural. Structural Engineering Review, 45(3), 178–195.

Chen, L., & Liu, H. (2023). Geometric Integration Techniques in Architectural Structural Analysis. Structural Engineering Review, 45(2), 112–129.

Chen, L., & Zhang, H. (2022). Aplicaciones de Series Gaussianas En Optimización Estructural Arquitectónica. Structural Engineering Review, 44(3), 201–218.

González-Lezcano, R. A. (2018). Mathematical Modeling in Architectural Design: Integral Calculus Applications. International Journal of Architectural Research, 12(3), 156–172.

Herrero, F. (2020). Límites Y Geometría Diferencial En Diseño Arquitectónico. Architectural Science Review, 63(4), 278–293.

Martínez-Pardo, A., & Jiménez-Rey, J. (2019). Optimization Techniques in Architectural Design Using Integral Calculus. Nexus Network Journal, 21(2), 89–105.

Martínez-Sánchez, R., & Kim, J. (2024). Modelado Gaussiano De Envolventes Arquitectónicas Sostenibles. Journal of Sustainable Design, 36(2), 89–107.

Martínez-Sánchez, R., Gómez, P., & Fernández, J. (2021). Múltiples Integrales En Diseño Arquitectónico Sostenible. Revista Iberoamericana de Arquitectura Computacional, 18(3), 45–62.

Martínez-Sánchez, R., Gómez, P., & Fernández, J. (2024). Modelado Multivariable De Envolventes Arquitectónicas Sostenibles. Journal of Sustainable Design, 37(2), 112–129.

Martínez-Sánchez, R., Gómez, P., & Fernández, J. (2024). Teoría De La Medida En Diseño De Envolventes Arquitectónicas Sostenibles. Journal of Sustainable Design, 37(2), 112–129.

Martínez-Sánchez, R., Hernández, P., & García, J. (2022). Análisis Integral De Tensiones En Estructuras Geodésicas Curvas. Revista Iberoamericana de Arquitectura Computacional, 29(4), 112–129.

Pérez-Gómez, M., & Rodríguez-Silva, L. (2017). Computational Methods for Spatial Analysis in Architecture Using Integral Calculus. Journal of Architectural Computation, 15(4), 412–428.

Rodríguez-García, A., López, M., & Soto, E. (2022). Modelado Matemático De Geometrías Arquitectónicas Complejas. Journal of Mathematical Architecture, 33(1), 78–95.

Rodríguez-García, A., López, M., & Soto, E. (2023). Aplicaciones De Derivadas Parciales En Diseño Arquitectónico Contemporáneo. Architectural Mathematics Journal, 30(4), 89–106.

Rosas-Bellido, E. (2020). Hyperbolic Geometry Tools in Parametric Design. Architectural Design, 90(5), 72–85.

Downloads

Published

2025-11-05

How to Cite

Rivera, E. R., Ramos, P. M., Hernández, F. M. C., & Hernández, N. V. (2025). APPLICATIONS OF DIFFERENTIAL CALCULUS TO ARCHITECTURE. International Journal of Research -GRANTHAALAYAH, 13(10), 98–110. https://doi.org/10.29121/granthaalayah.v13.i10.2025.6424