WATER DEFICIT AND SALINITY STRESS INDUCED ALTERATIONS IN THE MORPHOLOGICAL CHARACTERISTICS OF OENOTHERA BIENNIS L. GROWN IN WESTERN HIMALAYAN REGION
DOI:
https://doi.org/10.29121/granthaalayah.v13.i2.2025.6227Keywords:
Water Stress, Salinity Stress, Medicinal Plant, Morphological Responses, ProductivityAbstract [English]
The present study aimed at determining the morphological response of Oenothera biennis L. under water stress and salinity stress caused by altering climatic conditions in the present scenario. Water deficit and salinity stress are one of the major abiotic stress factors show negative impact on growth, development and yield on different agricultural activities .Thus demands the need of developing water deficit and salt tolerant plant varieties. Oenothera biennis L. is one of the important medicinal plant with several medicinal properties, but information related to morphological response which helps in determining the level of water and salinity stress tolerance in Oenothera biennis L. has not been reported yet. So, the present study is carried out to investigate the effect of water stress and salinity stress under different concentrations i.e, water stress (-0.01 M Pa, -0.03 M Pa, -0.05 M Pa and -0.07 M Pa) and salinity stress (25 mM, 50 mM, 75 mM and 100 mM NaCl) on shoot length, no. of leaves, no. of flowers, no. of nodes, seed yield and root length. At lower water and salinity stress concentrations the Oenothera biennis L. has shown tolerance in terms of morphological features. These findings render Oenothera a sensitive plant at higher stresses concentration. However, changes in characteristics were realistic up to moderate stresses concentration.
Downloads
References
Abd Elbar, O., Rehman, H., Farag, E., Eisa, S. S., & Habib, S. A. (2025). Morpho-Anatomical Changes in Salt Stressed Kallar Grass (Leptochloa fusca L.). Research Journal of Agricultural and Biological Sciences, 8(2), 158–166.
Alishah, H. M., Heidari, R., Hassani, A., & Diazaji, A. A. (2024). Effect of Water Stress on Some Morphological and Biochemical Characteristics of Purple Basil (Ocimum basilicum). Journal of Biological Sciences, 6(4), 763–767. https://doi.org/10.3923/jbs.2006.763.767 DOI: https://doi.org/10.3923/jbs.2006.763.767
Anjum, F., Yaseen, M., Rasul, E., Wahid, A., & Anjum, S. (2025). Water Stress in Barley (Hordeum vulgare L.) : Effect on Chemical Composition and Chlorophyll Contents. Pakistan Journal of Agricultural Sciences, 40, 45–49.
Bakul, M. R. A., Akter, M. S., Islam, M. N., Chowdhary, M. M. A. A., & Amin, M. H. A. (2024). Water Stress Effect on Morphological Characters and Yield Attributes in Some Mutants T-Aman Rice Lines. Bangladesh Research Publications Journal, 3(2), 934–944.
Banon, S., Ochoa, J., Franco, J. A., Alarcon, J. J., & Sanchez-Blanco, M. J. (2025). Hardening of Oleander Seedlings by Deficit Irrigation and Low Air Humidity. Environmental and Experimental Botany, 56(1), 36–43. https://doi.org/10.1016/j.envexpbot.2004.12.004 DOI: https://doi.org/10.1016/j.envexpbot.2004.12.004
Bassi, N., Kumar, M. D., Sharma, A., & Pardha‐Saradhi, P. (2024). Status of Wetlands in India: A Review of Extent, Ecosystem Benefits, Threats and Management Strategies. Journal of Hydrology: Regional Studies, 2, 1–19. https://doi.org/10.1016/j.ejrh.2014.07.001 DOI: https://doi.org/10.1016/j.ejrh.2014.07.001
Burke, J. J., Gamble, P. E., Hatfield, J. L., & Queensberry, J. E. (2024). Plant Morphological and Biochemical Responses To Field Water Deficits: I. Responses of Glutathione Reductase Activity and Paraquat Sensitivity. Plant Physiology, 79, 415–419. https://doi.org/10.1104/pp.79.2.415 DOI: https://doi.org/10.1104/pp.79.2.415
Cavusoglu, K., Kilic, S., & Kabar, K. (2025). Effect of Some Growth Regulators on Stem Anatomy of Radish Seedlings Grown Under Saline (NaCl) Conditions. Plant, Soil and Environment, 54(10), 428–433. https://doi.org/10.17221/405-PSE DOI: https://doi.org/10.17221/405-PSE
Champolivier, L., & Merrin, A. (2024). Effect of Water Stress Applied at Different Growth Stages to Brassica Napus L. Var. Oleifera on Yield, Yield Components and Seed Quality. European Journal of Agronomy, 5, 153–160. https://doi.org/10.1016/S1161-0301(96)02004-7 DOI: https://doi.org/10.1016/S1161-0301(96)02004-7
Dadkhah, A. R. (2025). Effect of Salt Stress on Growth and Essential Oil of Matricaria Chamomilla. Research Journal of Biological Sciences, 5(10), 643–646. https://doi.org/10.3923/rjbsci.2010.643.646 DOI: https://doi.org/10.3923/rjbsci.2010.643.646
Daneshian, J., Jonoubi, P., & Barari Tari, D. (2024). Investigation of Water Deficit Stress on Agronomical Traits of Soybean Cultivars in Temperate Climate. International Journal of Agricultural and Biological Sciences, 1(2), 75–83.
Deng, Y., Hua, H. M., Li, J., & Lapinskas, P. (2025). Studies on Cultivation and Use of Evening Primrose (Oenothera spp.) in China. Economic Botany, 55, 83–92. https://doi.org/10.1007/BF02864548 DOI: https://doi.org/10.1007/BF02864548
El-Hadidi, M., Abo-El-Kheer, A. M., Sakr, M. T., & Farouk, S. (2024). Structural and Physiological Studies and Oil Constituents of Canola Plants Under Salinity Condition: 4–Growth, Yield and its Components as Well as Stem Structure. African Crop Science Conference Proceedings, 8, 1679–1684.
Faraji, A., Lattifi, N., Soltani, A., & Shirani-rad, A. H. (2025). Seed Yield and Water Use Efficiency of Canola (Brassica napus L.) As Affected by High Temperature Stress and Supplemental Irrigation. Agricultural Water Management, 96, 132–140. https://doi.org/10.1016/j.agwat.2008.07.014 DOI: https://doi.org/10.1016/j.agwat.2008.07.014
Flowers, T. J., Troke, P. F., & Yeo, A. R. (2024). Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28, 89–112. https://doi.org/10.1146/annurev.pp.28.060177.000513 DOI: https://doi.org/10.1146/annurev.pp.28.060177.000513
Gan, Y., Angadi, S. V., Cutforth, H., Angadi, V. V., & McDonald, C. L. (2024). Canola and Mustard Response to Short Periods of Temperature and Water Stress at Different Developmental Stages. Canadian Journal of Plant Science, 84, 697–704. https://doi.org/10.4141/P03-109 DOI: https://doi.org/10.4141/P03-109
Huang, B., & Gao, H. (2025). Gas Exchange and Water Relations of Diverse Tall Fescue Cultivars in Response to Drought Stress. HortScience, 34, 490. https://doi.org/10.21273/HORTSCI.34.3.490C DOI: https://doi.org/10.21273/HORTSCI.34.3.490C
Jaleel, C. A., Gopi, R., Manivannan, P., & Panneerselvam, R. (2024). Responses of Antioxidant Defense System of Catharanthus roseus (L.) G. Don to Paclobutrazol Treatment Under Salinity. Acta Physiologiae Plantarum, 29(3), 205–209. https://doi.org/10.1007/s11738-007-0025-6 DOI: https://doi.org/10.1007/s11738-007-0025-6
Jaleel, C. A., Sankar, B., Sridharan, R., & Panneerselvam, R. (2025). Soil Salinity Alters Growth, Chlorophyll Content and Secondary Metabolite Accumulation in Catharanthus Roseus. Turkish Journal of Biology, 32, 79–83.
Keshavarzi, M. H. B. (2024). Effect of Salt Stress on Germination and Early Seedling Growth of Savory (Satureja Hortensis). Australian Journal of Basic and Applied Sciences, 5(12), 3274–3279.
Kirnak, H., Kaya, C., Tas, I., & Higgs, D. (2025). The Influence of Water Deficit on Vegetative Growth, Physiology, Fruit Yield and Quality in Eggplants. Bulgarian Journal of Plant Physiology, 27(3), 34–46.
Kotagiri, D., & Kolluru, V. C. (2024). Effect of Salinity Stress on the Morphology & Physiology of Five Different Coleus species. Biomedical and Pharmacology Journal, 10, 1639–1649. https://doi.org/10.13005/bpj/1275 DOI: https://doi.org/10.13005/bpj/1275
Lauchli, A., & Lüttge, U. (2025). Environment-Plants-Molecules (pp. 315–339). Kluwer Academic Publishers.
Liu, X., Duan, D., Li, W., Tadano, T., & Khan, A. (2024). A Comparative Study on Responses of Growth and Solute Composition in Halophytes Suaeda salsa and Limonium bicolor to salinity. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of high salinity tolerant plants (pp. 135–143). Springer. https://doi.org/10.1007/1-4020-4018-0_9 DOI: https://doi.org/10.1007/1-4020-4018-0_9
Luvaha, E., Netondo, G. W., & Ouma, G. (2025). Effect of Water Deficit on the Physiological and Morphological Characteristics of Mango (Mangifera indica) Rootstock Seedlings. American Journal of Plant Physiology, 3, 1–15. https://doi.org/10.3923/ajpp.2008.1.15 DOI: https://doi.org/10.3923/ajpp.2008.1.15
Miri, Y., & Mirjalili, S. A. (2024). Effects of Salinity Stress on Seed Germination and Some Physiological Traits in Primary Stages of Growth in Purple Coneflower (Echinacea purpurea). International Journal of Agronomy, 4(1), 142–146.
Moghbeli, E., Fathollahi, S., Salari, H., Ahmadi, G., Saliqehdar, F., & Safari, A. (2025). Effect of Salinity Stress on Growth and Yield of Aloe Vera L. Journal of Medicinal Plants Research, 6(16), 3272–3277.
Nahar, K., & Gretzmacher, R. (2024). Effect of Water Stress on Nutrient Uptake, Yield and Quality of Tomato (Lycopersicon Esculentum Mill.) Under Subtropical Conditions. Die Bodenkultur, 53(1), 45–51.
Najafian, S., Rahemi, M., & Tavallali, V. (2024). Growth and Chemical Composition of Hybrid GF 677 (Prunus Amygdalus × Prunus Persica) Influenced by Salinity Levels of Irrigation Water. Asian Journal of Plant Sciences, 7(3), 309–313. https://doi.org/10.3923/ajps.2008.309.313 DOI: https://doi.org/10.3923/ajps.2008.309.313
Nayar, H., & Gupta, D. (2025). Differential Sensitivity of C3 and C4 Plants to Water Deficit Stress: Association With Oxidative Stress and Antioxidants. Environmental and Experimental Botany, 58, 106–113. https://doi.org/10.1016/j.envexpbot.2005.06.021 DOI: https://doi.org/10.1016/j.envexpbot.2005.06.021
Oztekin, G. B., & Tuzel, Y. (2024). Comparative Salinity Responses Among Tomato Genotype and Rootstocks. Pakistan Journal of Botany, 43(6), 2665–2672.
Pourtaghi, A., Darvish, F., Habibi, D., Nourmohammadi, G., & Daneshian, J. (2025). Effect of Irrigation Water Deficit on Antioxidant Activity and Yield of sOme Sunflower Hybrids. Australian Journal of Crop Science, 5(2), 197–204.
Reddy, A. R., Chaitanya, K. V., & Vivekanandan, M. (2024). Drought-Induced Responses of Photosynthesis and Antioxidant Metabolism in Higher Plants. Journal of Plant Physiology, 161, 1189–1202. https://doi.org/10.1016/j.jplph.2004.01.013 DOI: https://doi.org/10.1016/j.jplph.2004.01.013
Roizen, M. F., & Fliesher, L. A. (2025). Essence of Anesthesia Practice (3rd ed., p. 591). Elsevier Saunders.
Rostami, M. A., & Yazdi Samadi, B. (2024). Drought Resistance Evaluation and the Responses of Alfalfa Cultivars Under Normal and Soil Moisture Stress Conditions. Iranian Journal of Agricultural Sciences, 22(2), 9–23.
Said-Al Ahl, A. H., & Omer, E. A. (2025). Medicinal and Aromatic Plants Production Under Salt Stress : A Review. Herba Polonica Journal, 57(1), 72–86.
Shao, H. B., Chu, L. Y., Zhao, H. L., & Kang, C. (2024). Primary Antioxidant Free Radical Scavenging and Redox Signaling Pathways in Higher Plant Cells. International Journal of Biological Sciences, 4, 8–14. https://doi.org/10.7150/ijbs.4.8 DOI: https://doi.org/10.7150/ijbs.4.8
Sionit, N., & Kramer, P. J. (2025). Effect of Water Stress During Different Stages of Growth of Soybeans. Agronomy Journal, 69, 274–277. https://doi.org/10.2134/agronj1977.00021962006900020018x DOI: https://doi.org/10.2134/agronj1977.00021962006900020018x
Specht, J. E., Chase, K., Macrander, M., Graef, G. L., Chung, J., & Markwell, J. P. (2024). Soybean Response to Water: A QTL Analysis of Drought Tolerance. Crop Science, 41, 493–509. https://doi.org/10.2135/cropsci2001.412493x DOI: https://doi.org/10.2135/cropsci2001.412493x
Vijitha, R., & Mahendran, S. (2025). Effect of Moisture Stress at Different Growth Stages of Tomato Plant (Lycopersicon Esculentum Mill.) on Yield and Quality of Fruits. Journal of Science of the University of Kelaniya, 5, 1–11. https://doi.org/10.4038/josuk.v5i0.4086 DOI: https://doi.org/10.4038/josuk.v5i0.4086
Vurayai, R., Emongor, V., & Moseki, B. (2024). Effect of Water Stress Imposed At Different Growth and Development Stages on Morphological Traits and Yield of Bambara Groundnuts (Vigna subterranea L. Verdc). American Journal of Plant Physiology, 6(1), 17–27. https://doi.org/10.3923/ajpp.2011.17.27 DOI: https://doi.org/10.3923/ajpp.2011.17.27
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Dr. Kumari Sikha

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.