A CONCEPTUAL STUDY ON METHODOLOGIES FOR LANDSLIDE HAZARD: INVENTORIES, SUSCEPTIBILITY, VULNERABILITY, AND RISK ANALYSIS
DOI:
https://doi.org/10.29121/granthaalayah.v13.i4.2025.6139Keywords:
Landslide Parameters, Susceptibility, Vulnerability Assessment, Risk Analysis, MethodologyAbstract [English]
Landslides pose a significant geohazard globally, particularly in Asia, which accounts for nearly 75% of worldwide landslide-related fatalities. The regions under the Himalayan Arc in India are especially vulnerable due to complex geomorphological, climatic, and anthropogenic factors. This conceptual review synthesizes existing methodologies for landslide hazard mapping by exploring four key dimensions: inventories, susceptibility, vulnerability, and risk assessment. The study highlights the importance of landslide inventories which serve as the foundation for accurate susceptibility modelling. Various susceptibility mapping approaches—qualitative, semi-quantitative, and quantitative have been reviewed. Further, vulnerability assessments through multidimensional frameworks, including heuristic and index-based methods, fragility curves, and numerical modelling, which evaluate the impact on both human and structural assets, are discussed. Finally, risk analysis is also deliberated through qualitative and quantitative lenses, integrating hazard intensity, vulnerability, and value of elements at risk. This review highlights the need for a multidisciplinary and mixed-method approach to enhance the accuracy, reliability, and practical applicability of landslide hazard assessments, particularly in data-scarce and high-risk regions.
Downloads
References
Aleotti, P., & Chowdhury, R. (1999). Landslide Hazard Assessment: Summary Review and new Perspectives. Bulletin of Engineering Geology and the Environment, 58, 21-44. https://doi.org/10.1007/s100640050066 DOI: https://doi.org/10.1007/s100640050066
Asmare, D. (2023). Application and Validation of AHP and FR Methods for Landslide Susceptibility Mapping Around Choke Mountain, Northwestern Ethiopia. Scientific African, 19. https://doi.org/10.1016/j.sciaf.2022.e01470 DOI: https://doi.org/10.1016/j.sciaf.2022.e01470
Banuzaki, A. S., & Ayu, A. K. (2021). Landslide Vulnerability Assessment Using GIS and Remote Sensing Techniques: A Case Study from Garut - Tasikmalaya Road. IOP Conference Series: Earth and Environmental Science, 622(1). https://doi.org/10.1088/1755-1315/622/1/012005 DOI: https://doi.org/10.1088/1755-1315/622/1/012005
Bell, R., & Glade, T. (2004). Quantitative Risk Analysis for Landslides—Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Sciences, 4, 117-131. https://doi.org/10.5194/nhess-4-117-2004 DOI: https://doi.org/10.5194/nhess-4-117-2004
Cardinali, M., Reichenbach, P., Guzzetti, F., Ardizzone, F., Antonini, G., Galli, M., Cacciano, M., Castellani, M., & Salvati, P. (2002). A Geomorphological Approach To the Estimation of Landslide Hazards and Risks in Umbria, Central Italy. Natural Hazards and Earth System Sciences, 2, 57-72. https://doi.org/10.5194/nhess-2-57-2002 DOI: https://doi.org/10.5194/nhess-2-57-2002
Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the Quantitative Analysis of Landslide Risk. Bulletin of Engineering Geology and the Environment, 73(2), 209-263. https://doi.org/10.1007/s10064-013-0538-8 DOI: https://doi.org/10.1007/s10064-013-0538-8
Cruden, D. M. (1991). A Simple Definition of A Landslide. Bulletin of the International Association of Engineering Geology, 43(1), 27-29. https://doi.org/10.1007/BF02590167 DOI: https://doi.org/10.1007/BF02590167
Ehret, D., Rohn, J., Dumperth, C., Eckstein, S., Ernstberger, S., Otte, K., Rudolph, R., Wiedenmann, J., Xiang, W., & Bi, R. (2010). Frequency Ratio Analysis of Mass Movements in the Xiangxi Catchment, Three Gorges Reservoir Area, China. Journal of Earth Science, 21(6), 824-834. https://doi.org/10.1007/s12583-010-0134-9 DOI: https://doi.org/10.1007/s12583-010-0134-9
Froude, M. J., & Petley, D. N. (2018). Global Fatal Landslide Occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18, 2161-2181. https://doi.org/10.5194/nhess-18-2161-2018 DOI: https://doi.org/10.5194/nhess-18-2161-2018
Glade, T. (2003). Vulnerability Assessment in Landslide Risk Analysis. DIE ERDE, 134, 123-146. Retrieved from https://www.researchgate.net/publication/279555131
Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in A Multi-Scale Study, Central Italy. Geomorphology, 31, 181-216. https://doi.org/10.1016/S0169-555X(99)00078-1 DOI: https://doi.org/10.1016/S0169-555X(99)00078-1
Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide Hazard Assessment in the Collazzone Area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115-131. https://doi.org/10.5194/nhess-6-115-2006 DOI: https://doi.org/10.5194/nhess-6-115-2006
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., & Chang, K. T. (2012). Landslide Inventory Maps: New Tools for an Old Problem. Earth-Science Reviews, 112, 42-66. https://doi.org/10.1016/j.earscirev.2012.02.001 DOI: https://doi.org/10.1016/j.earscirev.2012.02.001
Intarawichian, N., & Dasananda, S. (2010). Analytical Hierarchy Process for Landslide Susceptibility Mapping in Lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science and Technology, 7(3), 1-16.
Jamaludin, S., Huat, B., & Omar, H. (2008). Assessment of Landslide Hazard of A Cut-Slope Using Linear Regression Analysis. Landslides and Engineered Slopes, 1919-1924. https://doi.org/10.1201/9780203885284-c266 DOI: https://doi.org/10.1201/9780203885284-c266
Ko Ko, C., Flentje, P., & Chowdbury, R. (2004). Landslides Qualitative Hazard and Risk Assessment Method and Its Reliability. Bulletin of Engineering Geology and the Environment, 63, 149-165. https://doi.org/10.1007/s10064-004-0231-z DOI: https://doi.org/10.1007/s10064-004-0231-z
Lee, S., & Talib, J. A. (2005). Probabilistic Landslide Susceptibility and Factor Effect Analysis. Environmental Geology, 47, 982-990. https://doi.org/10.1007/s00254-005-1228-z DOI: https://doi.org/10.1007/s00254-005-1228-z
Leone, F., Aste, J. P., & Leroi, E. (1996). Vulnerability Assessment of Elements Exposed To Mass Movements: Working Towards A Better Risk Perception (K. Senneset, Ed.; Vol. 1).
Martha, T. R., Kerle, N., van Westen, C. J., Jetten, V., & Vinod Kumar, K. (2012). Object-Oriented Analysis of Multi-Temporal Panchromatic Images for Creation of Historical Landslide Inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 105-119. https://doi.org/10.1016/j.isprsjprs.2011.11.004 DOI: https://doi.org/10.1016/j.isprsjprs.2011.11.004
Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V., & Vinod Kumar, K. (2012). Landslide Hazard and Risk Assessment Using Semi-Automatically Created Landslide Inventories. Geomorphology. https://doi.org/10.1016/j.geomorph.2012.12.001 DOI: https://doi.org/10.1016/j.geomorph.2012.12.001
Marzocchi, W., Mastellone, L. M., Ruocco, A. Di, Novelli, P., Romeo, E., & Gasparini, P. (2009). Principles of Multi-Risk Assessment. https://doi.org/10.2777/30886
Mavrouli, O., Fotopoulou, S., Pitilakis, K., Zuccaro, G., Corominas, J., Santo, A., Cacace, F., De Gregorio, D., Di Crescenzo, G., Foerster, E., & Ulrich, T. (2014). Vulnerability Assessment for Reinforced Concrete Buildings Exposed To Landslides. Bulletin of Engineering Geology and the Environment. https://doi.org/10.1007/s10064-014-0573-0 DOI: https://doi.org/10.1007/s10064-014-0573-0
Meena, S. R., & Piralilou, S. T. (2019). Comparison of Earthquake-Triggered Landslide Inventories: A Case Study of the 2015 Gorkha Earthquake, Nepal. Geosciences (Switzerland, 9). https://doi.org/10.3390/geosciences9100437 DOI: https://doi.org/10.3390/geosciences9100437
Mondal, S., & Maiti, R. (2013). Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) Model in Landslide Susceptibility Mapping of Shiv-Khola Watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4(4), 200-212. https://doi.org/10.1007/s13753-013-0021-y DOI: https://doi.org/10.1007/s13753-013-0021-y
Negulescu, C., & Foerster, E. (2010). Parametric Studies and Quantitative Assessment of the Vulnerability of A Rc Frame Building Exposed To Differential Settlements. Natural Hazards and Earth System Science, 10, 1781-1792. https://doi.org/10.5194/nhess-10-1781-2010 DOI: https://doi.org/10.5194/nhess-10-1781-2010
Nguyen, T. T. N., & Liu, C. C. (2019). A New Approach Using AHP To Generate Landslide Susceptibility Maps in the Chen-Yu-Lan Watershed, Taiwan. Sensors (Switzerland, 19), 505. https://doi.org/10.3390/s19030505 DOI: https://doi.org/10.3390/s19030505
Panchal, S., & Shrivastava, A. K. (2022). Landslide Hazard Assessment Using Analytic Hierarchy Process (AHP): A Case Study of National Highway 5 in India. Ain Shams Engineering Journal, 13. https://doi.org/10.1016/j.asej.2021.10.021 DOI: https://doi.org/10.1016/j.asej.2021.10.021
Ray, K. (2018). India Tops the world in Landslide Deaths. Deccan Herald.
Remondo, J., Bonachea, J., & Cendrero, A. (2008). Quantitative Landslide Risk Assessment and Mapping on the Basis of Recent Occurrences. Geomorphology, 94, 496-507. https://doi.org/10.1016/j.geomorph.2006.10.041 DOI: https://doi.org/10.1016/j.geomorph.2006.10.041
Saaty, T. L. (1977). A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15, 234-281. https://doi.org/10.1016/0022-2496(77)90033-5 DOI: https://doi.org/10.1016/0022-2496(77)90033-5
Shah, N. A., Shafique, M., Ishfaq, M., Faisal, K., & Van der Meijde, M. (2023). Integrated Approach for Landslide Risk Assessment Using Geoinformation Tools and Field Data in Hindukush Mountain Ranges, Northern Pakistan. Sustainability, 15, 3102. https://doi.org/10.3390/su15043102 DOI: https://doi.org/10.3390/su15043102
Sheng, M., Zhou, J., Chen, X., Teng, Y., Hong, A., & Liu, G. (2022). Landslide Susceptibility Prediction Based on Frequency Ratio Method and C5.0 Decision Tree Model. Frontiers in Earth Science, 10. https://doi.org/10.3389/feart.2022.918386 DOI: https://doi.org/10.3389/feart.2022.918386
Silalahi, F. E. S., Pamela, Arifianti, Y., & Hidayat, F. (2019). Landslide Susceptibility Assessment Using Frequency Ratio Model in Bogor, West Java, Indonesia. Geoscience Letters, 6(10). https://doi.org/10.1186/s40562-019-0140-4 DOI: https://doi.org/10.1186/s40562-019-0140-4
Sim, K. B., Lee, M. L., & Wong, S. Y. (2022). A Review of Landslide Acceptable Risk and Tolerable Risk. Geoenvironmental Disasters, 9(3). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s40677-022-00205-6 DOI: https://doi.org/10.1186/s40677-022-00205-6
Sun, X., Chen, J., Bao, Y., Han, X., Zhan, J., & Peng, W. (2018). Landslide Susceptibility Mapping Using Logistic Regression Analysis Along the Jinsha River and Its Tributaries Close to Derong and Deqin County, Southwestern China. ISPRS International Journal of Geo-Information, 7, 438. https://doi.org/10.3390/ijgi7110438 DOI: https://doi.org/10.3390/ijgi7110438
Syam, M. A., Heryanto, & Balfas, M. D. (2019). Mapping of Landslide Susceptibility Using Analytical Hierarchy Process in Sukamaju Area, Tenggarong Seberang, Regency of Kutai Kartanegara. IOP Conference Series: Earth and Environmental Science, 279(1). https://doi.org/10.1088/1755-1315/279/1/012002 DOI: https://doi.org/10.1088/1755-1315/279/1/012002
UNISDR. (2017). Words into Action Guidelines: National Disaster Risk Assessment Hazard-Specific Risk Assessment. Retrieved from https://pubs.usgs.gov/fs/2004/3072/fs-2004-3072.html
UNISDR. (2009). UNISDR Terminology on Disaster Risk Reduction.
Wang, H. B., Wu, S. R., Shi, J. S., & Li, B. (2013). Qualitative Hazard and Risk Assessment of Landslides: A Practical Framework for A Case Study in China. Natural Hazards, 69, 1281-1294. https://doi.org/10.1007/s11069-011-0008-1 DOI: https://doi.org/10.1007/s11069-011-0008-1
Westen, C. J. van, Alkema, D., Damen, M. C. J., Kerle, N., & Kingma, N. C. (2011). Multi-Hazard Risk Assessment.
Westen, C. J. van, Rengers, N., & Soeters, R. (2003). Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment. Natural Hazards, 30, 399-419. https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e DOI: https://doi.org/10.1023/B:NHAZ.0000007097.42735.9e
World Bank. (2020). The Global Landslide Hazard Map Final Project Report.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Amar Jyoti Taye, Rubi Tamang

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.