HONEYBEES’ BEHAVIOUR IN A FARADAY-SHIELDED HIVE : MANDATORY SCHUMANN RESONANCE FOR COLONY SURVIVAL
DOI:
https://doi.org/10.29121/granthaalayah.v13.i4.2025.6023Keywords:
Honeybees, RF-EMF, Anthropogenic Electrosmog, Faraday Hive, Shielding, Earth’ Schumann ResonanceAbstract [English]
Research shows that low-level anthropogenic electromagnetic fields negatively impact various species in their behaviour, affecting orientation, migration, foraging, reproduction, nesting, territorial defense, vitality, and survival. Many insects, like honeybees, rely on Earth's electromagnetic fields for orientation and foraging. The honeybees react negatively to anthropogenic multi-frequency interference through multi-sensory mechanisms. In order to circumvent the potentially negative effects of external electromagnetic influence, the honeybees were kept in Faraday hives. Placing honeybees in such Faraday-shielded cages, which block external electromagnetic fields, effectively isolates them from natural electromagnetic frequencies. However, the long-term survival of the honeybees in such Faraday hives was only possible with the artificial re-introduction of the Earth's natural electromagnetic environment, the Schumann resonance. Honeybees placed in Faraday cages without access to the Schumann resonance experience a range of effects, including physiological impairments to the queen of the honeybees’ colony, which stops laying fertilized eggs. This is leading to the collapse of the colony, which is finally containing only immature female workers and drones. These findings highlight the significance of natural electromagnetic fields in maintaining homeostasis and normal biological functions of honeybees. Further research is needed to explore factors like electromagnetic radiation affecting honeybee physiology and behaviour. The combined effect of multiple stressors, interacting across space and time, likely plays a central role in the global decline of honeybee health.
Downloads
References
Bandara, P., & Carpenter, D. O. (2018). Planetary Electromagnetic Pollution: It is Time to Assess its Impact. The Lancet Planetary Health, 2 (12), e512-e514. https://doi.org/10.1016/S2542-5196(18)30221-3 DOI: https://doi.org/10.1016/S2542-5196(18)30221-3
Brown, M. J., Dicks, L. V., Paxton, R. J., Baldock, K. C., Barron, A. B., Chauzat, M. P., ... Stout, J. C. (2016). A Horizon Scan of Future Threats and Opportunities for Pollinators and Pollination. PeerJ, 4, e2249. https://doi.org/10.7717/peerj.2249 DOI: https://doi.org/10.7717/peerj.2249
Celozzi, S., Araneo, R., Burghignoli, P., & Lovat, G. (2023). Electromagnetic Shielding: Theory and Applications. Wiley. DOI: https://doi.org/10.1002/9781119736318
Charrière, J. D., Imdorf, A., Kuhn, R., & Liebefeld-Posieux, A. (2004). Tolérance Pour Les Abeilles De Différents Traitements Hivernaux Contre Varroa.
Cucurachi, S., Tamis, W. L., Vijver, M. G., Peijnenburg, W. J., Bolte, J. F., & de Snoo, G. R. (2013). A Review of the Ecological Effects of Radiofrequency Electromagnetic Fields (RF-EMF). Environment International, 51, 116-140. https://doi.org/10.1016/j.envint.2012.10.009 DOI: https://doi.org/10.1016/j.envint.2012.10.009
Decourtye, A., Alaux, C., Le Conte, Y., & Henry, M. (2019). Toward the Protection of Bees and Pollination Under Global Change: Present and Future Perspectives in a Challenging Applied Science. Current Opinion in Insect Science, 35, 123-131. https://doi.org/10.1016/j.cois.2019.07.008 DOI: https://doi.org/10.1016/j.cois.2019.07.008
Faraday, M. (1832). Experimental Researches in Electricity - Volume 1. Read Books Limited.
Favre, D. (2011). Mobile Phone-Induced Honeybee Worker Piping. Apidologie, 42 (3), 270-279. https://doi.org/10.1007/s13592-011-0016-x DOI: https://doi.org/10.1007/s13592-011-0016-x
Favre, D. (2017). Disturbing Honeybees’ Behavior with Electromagnetic Waves: A Methodology. Journal of Behavior, 2 (2), Article 1010.
Favre, D., & Johansson, O. (2020). Does Enhanced Electromagnetic Radiation Disturb Honeybees’ Behaviour? Observations During New Year’s Eve 2019. International Journal Of Research, 8, 7-14. https://doi.org/10.29121/granthaalayah.v8.i11.2020.2151 DOI: https://doi.org/10.29121/granthaalayah.v8.i11.2020.2151
Febinger, H. Y., George, A., Priestley, J., Toth, L. A., & Opp, M. R. (2014). Effects of Housing Condition and Cage Change on Characteristics of Sleep in Mice. Journal of the American Association for Laboratory Animal Science, 53 (1), 29-37.
Fleischmann, P. N., Grob, R., & Rössler, W. (2020). Magnetoreception in Hymenoptera: Importance for Navigation. Animal Cognition, 23 (6), 1051-1061. https://doi.org/10.1007/s10071-020-01431-x DOI: https://doi.org/10.1007/s10071-020-01431-x
Genersch, E. (2010). Honey Bee Pathology: Current Threats to Honey Bees and Beekeeping. Applied Microbiology and Biotechnology, 87 (1), 87-97. https://doi.org/10.1007/s00253-010-2573-8 DOI: https://doi.org/10.1007/s00253-010-2573-8
Halabi, N., Achkar, R., & Haidar, G. A. (2013). The Effect of Cell Phone Radiations on the Life Cycle of Honeybees. Eurocon 2013, 529-536. https://doi.org/10.1109/EUROCON.2013.6625032 DOI: https://doi.org/10.1109/EUROCON.2013.6625032
Hore, P. J., & Mouritsen, H. (2016). The Radical-Pair Mechanism of Magnetoreception. Annual Review of Biophysics, 45, 299-344. https://doi.org/10.1146/annurev-biophys-032116-094545 DOI: https://doi.org/10.1146/annurev-biophys-032116-094545
Hsu, C. Y., Ko, F. Y., Li, C. W., Fann, K., & Lue, J. T. (2007). Magnetoreception System in Honeybees (Apis mellifera). PLOS ONE, 2 (4), e395. https://doi.org/10.1371/journal.pone.0000395 DOI: https://doi.org/10.1371/journal.pone.0000395
International Commission on Non-Ionizing Radiation Protection (ICNIRP). (2020). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Physics, 118 (5), 483-524. https://doi.org/10.1097/hp.0000000000001210 DOI: https://doi.org/10.1097/HP.0000000000001210
Kirschvink, J. L. (1981). The Horizontal Magnetic Dance of the Honeybee is Compatible with a Single-Domain Ferromagnetic Magnetoreceptor. Biosystems, 14 (2), 193-203. https://doi.org/10.1016/0303-2647(81)90068-x DOI: https://doi.org/10.1016/0303-2647(81)90068-X
Lambinet, V., Hayden, M. E., Reid, C., & Gries, G. (2017). Honey Bees Possess a Polarity-Sensitive Magnetoreceptor. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 203 (12), 1029-1036. https://doi.org/10.1007/s00359-017-1214-4 DOI: https://doi.org/10.1007/s00359-017-1214-4
Lambinet, V., Hayden, M. E., Reigl, K., Gomis, S., & Gries, G. (2017). Linking Magnetite in the Abdomen of Honey Bees to a Magnetoreceptive Function. Proceedings of the Royal Society B: Biological Sciences, 284 (1851). https://doi.org/10.1098/rspb.2016.2873 DOI: https://doi.org/10.1098/rspb.2016.2873
Levitt, B. B., Lai, H. C., & Manville, A. M. (2022). Effects of Non-Ionizing Electromagnetic Fields on Flora and Fauna, Part 2 impacts: How Species Interact with Natural and Man-Made EMF. Reviews on Environmental Health, 37 (3), 327-406. https://doi.org/10.1515/reveh-2021-0050 DOI: https://doi.org/10.1515/reveh-2021-0050
Lindauer, M., & Martin, H. (1968). Die Schwereorientierung Der Bienen Unter Dem Einfluß Des Erdmagnetfeldes. Zeitschrift Für Vergleichende Physiologie, 60 (3), 219-243. https://doi.org/10.1007/BF00298600 DOI: https://doi.org/10.1007/BF00298600
Migdał, P., Berbeć, E., Bieńkowski, P., Plotnik, M., Murawska, A., & Latarowski, K. (2022). Exposure to Magnetic Fields Changes the Behavioral Pattern in Honeybees (Apis mellifera L.) Under Laboratory Conditions. Animals, 12. https://doi.org/10.3390/ani12070855 DOI: https://doi.org/10.3390/ani12070855
Molina‐Montenegro, M., Acuña‐Rodríguez, I., Ballesteros, G., Baldelomar, M., Torres‐Díaz, C., Broitman, B., & Vázquez, D. (2023). Electromagnetic Fields Disrupt the Pollination Service by Honeybees. Science Advances, 9. https://doi.org/10.1126/sciadv.adh1455 DOI: https://doi.org/10.1126/sciadv.adh1455
Morrison, J. (2014). Electronics' Noise Disorients Migratory Birds. Nature. https://doi.org/10.1038/nature.2014.15176 DOI: https://doi.org/10.1038/nature.2014.15176
Morrison, R. (2016). Grounding and Shielding: Circuits and Interference. Wiley. DOI: https://doi.org/10.1002/9781119183723
Nickolaenko, A., & Hayakawa, M. (2014). Schumann Resonance for tyros: Essentials of Global Electromagnetic Resonance in the Earth–Ionosphere Cavity. Springer Japan. https://doi.org/10.1007/978-4-431-54358-9_1 DOI: https://doi.org/10.1007/978-4-431-54358-9
Ohmura, N., Ogino, S., & Okano, Y. (2014). Optimized Shielding Pattern of RF Faraday Cage. 2014 International Symposium on Electromagnetic Compatibility, Tokyo, 765-768.
Panagopoulos, D. J. (2013). Electromagnetic Interaction Between Environmental Fields and Living Systems Determines Health and Well-Being. In Electromagnetic Fields: Principles, Engineering Applications and Biophysical Effects (1st ed., pp. 87-130). Nova Science Publishers.
Panagopoulos, D. J., & Chrousos, G. P. (2019). Shielding Methods and Products Against Man-Made Electromagnetic Fields: Protection Versus Risk. Science of the Total Environment, 667, 255-262. https://doi.org/10.1016/j.scitotenv.2019.02.344 DOI: https://doi.org/10.1016/j.scitotenv.2019.02.344
Patsnap, E. B. (2024). Schumann Resonance Generator: Harnessing Earth’s Frequency. Patsnap Eureka.
Ramo, S., Whinnery, J. R., & Van Duzer, T. (1994). Fields and Waves in Communication Electronics. Wiley.
Rouleau, N., & Dotta, B. T. (2014). Electromagnetic Fields as Structure-Function Zeitgebers in Biological Systems: Environmental Orchestrations of Morphogenesis and Consciousness. Frontiers in Integrative Neuroscience, 8, 84. https://doi.org/10.3389/fnint.2014.00084 DOI: https://doi.org/10.3389/fnint.2014.00084
Schumann, W. O. (1952). Über Die Strahlungslosen Eigenschwingungen Einer Leitenden Kugel, Die Von Einer Luftschicht Und Einer Ionosphärenhülle Umgeben Ist. Zeitschrift Für Naturforschung A, 7 (2), 149-154. https://doi.org/10.1515/zna-1952-0202 DOI: https://doi.org/10.1515/zna-1952-0202
Sentman, D. D. (2017). Schumann resonances. In Handbook of Atmospheric Electrodynamics, Volume I (Pp. 267-295). Crc Press.
Shaw, J. A., Boyd, A., House, M., Cowin, G., & Baer, B. (2018). Multi-Modal Imaging and Analysis in the Search for Iron-Based Magnetoreceptors in the Honeybee Apis Mellifera. Royal Society Open Science, 5 (9), 181163. https://doi.org/10.1098/rsos.181163 DOI: https://doi.org/10.1098/rsos.181163
Vanbergen, A. J., Potts, S. G., Vian, A., Malkemper, E. P., Young, J., & Tscheulin, T. (2019). Risk to Pollinators from Anthropogenic Electromagnetic Radiation (EMR): Evidence and knowledge gaps. Science of the Total Environment, 695, 133833. https://doi.org/10.1016/j.scitotenv.2019.133833 DOI: https://doi.org/10.1016/j.scitotenv.2019.133833
Vanengelsdorp, D., Evans, J. D., Saegerman, C., Mullin, C., Haubruge, E., Nguyen, B. K., ... Pettis, J. S. (2009). Colony Collapse Disorder: A Descriptive Study. PLOS ONE, 4 (8), e6481. https://doi.org/10.1371/journal.pone.0006481 DOI: https://doi.org/10.1371/journal.pone.0006481
Válková, T., & Vácha, M. (2012). How do Honeybees use their Magnetic Compass? Can they see the North? Bulletin of Entomological Research, 102 (4), 461-467. https://doi.org/10.1017/S0007485311000824 DOI: https://doi.org/10.1017/S0007485311000824
Watson, K., & Stallins, J. A. (2016). Honey Bees and Colony Collapse Disorder: A Pluralistic Reframing. Geography Compass, 10 (5), 222-236. https://doi.org/10.1111/gec3.12266 DOI: https://doi.org/10.1111/gec3.12266
Wever, R. (1970). The Effects of Electric Fields on Circadian Rhythmicity in Men. Life Sciences and Space Research, 8, 177-187.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Daniel Favre, Olle Johansson

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.