FERTILITY IN WOMEN WITH HEREDITARY BREAST AND OVARIAN CANCER
DOI:
https://doi.org/10.29121/granthaalayah.v13.i3.2025.5993Keywords:
Female Fertility, Breast Cancer, Ovarian Cancer, BRCA1/2 Gene MutationsAbstract [English]
Among the causes of breast cancer and ovarian cancer in women, mutations of the BRCA1/2 genes have been characterized in detail. However, the effect of BRCA1/2 gene mutations on female fertility remains controversial. The purpose of this review is to assess the relationship between the BRCA1 and BRCA2 mutation status and female fertility in its various manifestations. A number of scientists consider mutations of the BRCA1/2 genes as a negative factor that reduces the reproductive abilities of women. A study of BRCA1/2 mutations in oocytes showed the possibility of spontaneous inactivation of the X chromosome, which can lead to infertility of female offspring, as well as a significantly reduced ovarian reserve and low oocyte yield. There are studies devoted to the assessment of gene expression in young and old oocytes, which showed a decrease in protein expression by DNA repair genes in parallel with age in rodents, cattle and humans. A series of studies confirm a significant decrease in the number of follicles in women carriers of BRCA1/2. There is an opinion that mutations of the BRCA1/2 genes do not affect the fertility of women carriers of these mutations. These studies are based on epidemiological and demographic data. A number of scientists attribute the presence of BRCA1\2 mutations to factors that increase fertility. They base their point of view on the longer telomeres in the reproductive cells of mutation carriers. In mutation carriers, the average telomere length is significantly longer than in their relatives who are not carriers (P = 0.0018), especially in families with BRCA2 mutations (P = 0.0016). The authors of the studies rely on such a well-known phenomenon as antagonistic pleiotropy. The mechanisms linking BRCA1 and BRCA2 mutations with female fertility remain a subject of debate and have not been fully studied. Animal model studies may reveal new mechanisms by which BRCA1/2 gene mutations affect female fertility.
Downloads
References
Schlottmann, F., Strauß, S., Ziesing, S., Reineke, C., Ipaktchi, R., Weyand, B., Krezdorn, N., Vogt, P. M., & Bucan, V. (2024). Organization of Hannover Skin Bank: Sterile culture and procurement protocols for viable cryopreserved allogeneic skin grafts of living donors. International Wound Journal, 21 (1), e14374. https://doi.org/10.1111/iwj.14374 DOI: https://doi.org/10.1111/iwj.14374
Pianigiani, E., Ierardi, F., Cuciti, C., Brignali, S., Oggioni, M., & Fimiani, M. (2010). Processing efficacy in relation to microbial contamination of skin allografts from 723 donors. Burns, 36 (3), 347–351. https://doi.org/10.1016/j.burns.2009.04.020 DOI: https://doi.org/10.1016/j.burns.2009.04.020
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71 (1), 209–249. https://doi.org/10.3322/caac.21660 DOI: https://doi.org/10.3322/caac.21660
Harbeck, N., Penault-Llorca, F., Cortes, J., Gnant, M., Houssami, N., Poortmans, P., Ruddy, K., Tsang, J., & Cardoso, F. (2019). Breast cancer. Nature Reviews Disease Primers, 5, 11–66. https://doi.org/10.1038/s41572-019-0111-2 DOI: https://doi.org/10.1038/s41572-019-0111-2
Dyba, T., Randi, G., Bray, F., Martos, C., Giusti, F., Nicholson, N., Gavin, A., Flego, M., Neamtiu, L., Dimitrova, N., Negrão Carvalho, R., Ferlay, J., & Bettio, M. (2021). The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. European Journal of Cancer, 157, 308–347. https://doi.org/10.1016/j.ejca.2021.07.039 DOI: https://doi.org/10.1016/j.ejca.2021.07.039
Zheng, Y., Li, Y., Zhou, K., Li, T., VanDusen, N. J., & Hua, Y. (2024). Precise genome-editing in human diseases: Mechanisms, strategies, and applications. Signal Transduction and Targeted Therapy, 9 (1), 21–47. https://doi.org/10.1038/s41392-024-01750-2 DOI: https://doi.org/10.1038/s41392-024-01750-2
Polizio, A. H., Park, E., & Walsh, K. (2023). Clonal hematopoiesis: Connecting aging and inflammation in atherosclerosis. Current Atherosclerosis Reports, 3 (1), 105–111. https://doi.org/10.1007/s11883-023-01083-5 DOI: https://doi.org/10.1007/s11883-023-01083-5
Li, Y., Dong, W., Zhang, P., Zhang, T., Ma, L., Qu, M., Ma, X., Zhou, X., & He, Q. (2021). Comprehensive analysis of regulatory factors and immune-associated patterns to decipher common and BRCA1/2 mutation-type-specific critical regulation in breast cancer. Frontiers in Cell and Developmental Biology, 9, 750897. https://doi.org/10.3389/fcell.2021.750897 DOI: https://doi.org/10.3389/fcell.2021.750897
Sengodan, S. K., Hu, X., Peddibhotla, V., Balamurugan, K., Mitrophanov, A. Y., McKennett, L., Kharat, S. S., Sanawar, R., Singh, V. K., Albaugh, M. E., Burkett, S. S., Zhao, Y., Tran, B., Malys, T., Sterneck, E., De, S., & Sharan, S. K. (2024). Mismatch repair protein MLH1 suppresses replicative stress in BRCA2-deficient breast tumors. The Journal of Clinical Investigation, 134 (7), e173718. https://doi.org/10.1172/JCI173718 DOI: https://doi.org/10.1172/JCI173718
Liu, X., Yue, J., Pervaiz, R., Zhang, H., & Wang, L. (2022). Association between fertility treatments and breast cancer risk in women with a family history or BRCA mutations: A systematic review and meta-analysis. Frontiers in Endocrinology, 13, 986477. https://doi.org/10.3389/fendo.2022.986477 DOI: https://doi.org/10.3389/fendo.2022.986477
Oktay, K., Kim, J. Y., Barad, D., & Babayev, S. N. (2024). Association of BRCA1 mutations with occult primary ovarian insufficiency: A possible explanation for the link between infertility and breast/ovarian cancer risks. Journal of Clinical Oncology, 28 (2), 240–244. https://doi.org/10.1200/JCO.2009.24.2057 DOI: https://doi.org/10.1200/JCO.2009.24.2057
Melnick, A. (2023). Menopause. In P. H. Chung & Z. Rosenwaks (Eds.), Problem-Focused Reproductive Endocrinology and Infertility (pp. 245–251). Springer International Publishing. https://doi.org/10.1007/978-3-031-19443-6 DOI: https://doi.org/10.1007/978-3-031-19443-6_35
Zhu, Z., Xu, W., & Liu, L. (2022). Ovarian aging: Mechanisms and intervention strategies. Medical Reviews, 2 (6), 590–610. https://doi.org/10.1515/mr-2022-0031 DOI: https://doi.org/10.1515/mr-2022-0031
Wang, X., Wang, L., & Xiang, W. (2023). Mechanisms of ovarian aging in women: A review. Journal of Ovarian Research, 16 (1), 67–81. https://doi.org/10.1186/s13048-023-01151-z DOI: https://doi.org/10.1186/s13048-023-01151-z
Yuan, L., Yin, P., Yan, H., Zhong, X., Ren, C., Li, K., Chin Heng, B., Zhang, W., & Tong, G. (2021). Single-cell transcriptome analysis of human oocyte ageing. Journal of Cellular and Molecular Medicine, 25, 6289–6303. https://doi.org/10.1111/jcmm.16594 DOI: https://doi.org/10.1111/jcmm.16594
Turan, V., & Oktay, K. (2020). BRCA-related ATM-mediated DNA double-strand break repair and ovarian aging. Human Reproduction Update, 26 (1), 43–57. https://doi.org/10.1093/humupd/dmz043 DOI: https://doi.org/10.1093/humupd/dmz043
Horta, F., Ravichandran, A., Catt, S., Vollenhoven, B., & Temple-Smith, P. (2021). Ageing and ovarian stimulation modulate the relative levels of transcript abundance of oocyte DNA repair genes during the germinal vesicle-metaphase II transition in mice. Journal of Assisted Reproduction and Genetics, 38 (1), 55–69. https://doi.org/10.1007/s10815-020-01981-6 DOI: https://doi.org/10.1007/s10815-020-01981-6
Bilotto, S., Boni, R., Russo, G. L., & Lioi, M. B. (2015). Meiosis progression and donor age affect the expression profile of DNA repair genes in bovine oocytes. Zygote, 23 (1), 11–18. https://doi.org/10.1017/S0967199413000154 DOI: https://doi.org/10.1017/S0967199413000154
Smits, M. A. J., Janssens, G. E., Goddijn, M., Hamer, G., Houtkooper, R. H., & Mastenbroek, S. (2021). Longevity pathways are associated with human ovarian ageing. Human Reproduction Open, 2021 (2), hoab020. https://doi.org/10.1093/hropen/hoab020 DOI: https://doi.org/10.1093/hropen/hoab020
Nash, Z., & Davies, M. (2024). Premature ovarian insufficiency. BMJ, 20 (384), e077469. https://doi.org/10.1136/bmj-2023-077469 DOI: https://doi.org/10.1136/bmj-2023-077469
Zhang, X., Niu, J., Che, T., Zhu, Y., Zhang, H., & Qu, J. (2020). Fertility preservation in BRCA mutation carriers—efficacy and safety issues: A review. Reproductive Biology and Endocrinology, 18 (1), 11–27. https://doi.org/10.1186/s12958-019-0561-0 DOI: https://doi.org/10.1186/s12958-019-0561-0
El Moujahed, L., Philis, R., Grynberg, M., Laot, L., Mur, P., Amsellem, N., Mayeur, A., Benoit, A., Rakrouki, S., Sifer, C., Peigné, M., & Sonigo, C. (2023). Response to ovarian stimulation for urgent fertility preservation before gonadotoxic treatment in BRCA-pathogenic-variant-positive breast cancer patients. Cancers (Basel), 15 (3), 895. https://doi.org/10.3390/cancers15030895 DOI: https://doi.org/10.3390/cancers15030895
Dias Nunes, J., Demeestere, I., & Devos, M. (2023). BRCA mutations and fertility preservation. International Journal of Molecular Sciences, 25 (1), 204–226. https://doi.org/10.3390/ijms25010204 DOI: https://doi.org/10.3390/ijms25010204
Di Nisio, V., Daponte, N., Messini, C., Anifandis, G., & Antonouli, S. (2024). Oncofertility and fertility preservation for women with gynecological malignancies: Where do we stand today? Biomolecules, 14 (8), 943–968. https://doi.org/10.3390/biom14080943 DOI: https://doi.org/10.3390/biom14080943
Buonomo, B., Massarotti, C., Dellino, M., Anserini, P., Ferrari, A., Campanella, M., Magnotti, M., De Stefano, C., Peccatori, F. A., & Lambertini, M. (2021). Reproductive issues in carriers of germline pathogenic variants in the BRCA1/2 genes: An expert meeting. BMC Medicine, 19 (1), 205. https://doi.org/10.1186/s12916-021-02081-7 DOI: https://doi.org/10.1186/s12916-021-02081-7
Ben Ayed-Guerfali, D., Ben Kridis-Rejab, W., Ammous-Boukhris, N., Ayadi, W., Charfi, S., Khanfir, A., Sellami-Boudawara, T., Frikha, M., Daoud, J., & Mokdad-Gargouri, R. (2021). Novel and recurrent BRCA1/BRCA2 germline mutations in patients with breast/ovarian cancer: A series from the south of Tunisia. Journal of Translational Medicine, 19 (1), 108. https://doi.org/10.1186/s12967-021-02772-y DOI: https://doi.org/10.1186/s12967-021-02772-y
Dellino, M., D'Amato, A., Battista, G., Cormio, G., Vimercati, A., Loizzi, V., Laganà, A. S., Damiani, G. R., Favilli, A., Gerli, S., La Forgia, D., Daniele, A., Agrifoglio, V., Cicinelli, E., Vitagliano, A., & Etrusco, A. (2024). Reproductive outcomes in women with BRCA 1/2 germline mutations: A retrospective observational study and literature review. Open Medicine (Wars), 19(1), 20249999. https://doi.org/10.1515/med-2024-9999 DOI: https://doi.org/10.1515/med-2024-9999
Peccatori, F. A., Mangili, G., Bergamini, A., Filippi, F., Martinelli, F., Ferrari, F., Noli, S., Rabaiotti, E., Candiani, M., & Somigliana, E. (2018). Fertility preservation in women harboring deleterious BRCA mutations: Ready for prime time? Human Reproduction, 33(2), 181–187. https://doi.org/10.1093/humrep/dex356 DOI: https://doi.org/10.1093/humrep/dex356
Friedman, E., Kotsopoulos, J., Lubinski, J., Lynch, H. T., Ghadirian, P., Neuhausen, S. L., Isaacs, C., Weber, B., Foulkes, W. D., Moller, P., Rosen, B., Kim-Sing, C., Gershoni-Baruch, R., Ainsworth, P., Daly, M., Tung, N., Eisen, A., Olopade, O. I., Karlan, B., Saal, H. M., Garber, J. E., Rennert, G., Gilchrist, D., Eng, C., Offit, K., Osborne, M., Sun, P., & Narod, S. A. (2006). Spontaneous and therapeutic abortions and the risk of breast cancer among BRCA mutation carriers. Breast Cancer Research, 8(2), R15. https://doi.org/10.1186/bcr1387 DOI: https://doi.org/10.1186/bcr1387
Moslehi, R., Singh, R., Lessner, L., & Friedman, J. M. (2010). Impact of BRCA mutations on female fertility and offspring sex ratio. American Journal of Human Biology, 22 (2), 201–215. https://doi.org/10.1002/ajhb.20978 DOI: https://doi.org/10.1002/ajhb.20978
Dorkins, H., Douglas, F., Eason, J., Houghton, C., Kennedy, M. J., McCann, E., Miedzybrodzka, Z., Murray, A., Porteous, M. E., Rogers, M. T., Side, L. E., Tischkowitz, M., Walker, L., Hodgson, S., Eccles, D. M., Morrison, P. J., Evans, D. G., Eeles, R. A., Antoniou, A. C., Easton, D. F., & Dunning, A. M. (2014). Lymphocyte telomere length is long in BRCA1 and BRCA2 mutation carriers regardless of cancer-affected status. Cancer Epidemiology Biomarkers & Prevention, 23(6), 1018–1024. https://doi.org/10.1158/1055-9965.EPI-13-0635-T DOI: https://doi.org/10.1158/1055-9965.EPI-13-0635-T
French, J. D., Dunn, J., & Smart, C. E. (2006). Disruption of BRCA1 function results in telomere lengthening and increased anaphase bridge formation in immortalized cell lines. Genes Chromosomes & Cancer, 45, 277–289. https://doi.org/10.1002/gcc.20290 DOI: https://doi.org/10.1002/gcc.20290
Magaton, I. M., Arecco, L., Mariamidze, E., Jankovic, K., Stana, M., Buzzatti, G., Trevisan, L., Scavone, G., Ottonello, S., Fregatti, P., Massarotti, C., von Wolff, M., & Lambertini, M. (2024). Fertility and pregnancy-related issues in young BRCA carriers with breast cancer. Breast Cancer (Auckland), 14(18), 11782234241261429. https://doi.org/10.1177/11782234241261429 DOI: https://doi.org/10.1177/11782234241261429
Smith, K. R., Hanson, H. A., Mineau, G. P., & Buys, S. S. (2012). Effects of BRCA1 and BRCA2 mutations on female fertility. Proceedings of the Royal Society B: Biological Sciences, 279 (1732), 1389–1395. https://doi.org/10.1098/rspb.2011.1697 DOI: https://doi.org/10.1098/rspb.2011.1697
Tsatsakis, A., Oikonomopoulou, T., Nikolouzakis, T. K., Vakonaki, E., Tzatzarakis, M., Flamourakis, M., Renieri, E., Fragkiadaki, P., Iliaki, E., Bachlitzanaki, M., Karzi, V., Katsikantami, I., Kakridonis, F., Hatzidaki, E., Tolia, M., Svistunov, A. A., Spandidos, D. A., Nikitovic, D., Tsiaoussis, J., & Berdiaki, A. (2023). Role of telomere length in human carcinogenesis (Review). International Journal of Oncology, 63, 178. https://doi.org/10.3892/ijo.2023.5526 DOI: https://doi.org/10.3892/ijo.2023.5526
Mikheev, R. K., Andreeva, E. N., Grigoryan, O. R., Sheremetyeva, E. V., Absatarova, Y. S., & Loginova, E. V. (2023). Replicative and biochemical ageing features among females with primary ovarian insufficiency. Problemy Endokrinologii, 69 (2), 92–98. https://doi.org/10.14341/probl13253 DOI: https://doi.org/10.14341/probl13253
Robinson, L. G. Jr., Kalmbach, K., Sumerfield, O., Nomani, W., Wang, F., Liu, L., & Keefe, D. L. (2024). Telomere dynamics and reproduction. Fertility and Sterility, 121 (1), 4–11. https://doi.org/10.1016/j.fertnstert.2023.11.012 DOI: https://doi.org/10.1016/j.fertnstert.2023.11.012
Pirtea, P., Keefe, D. L., Ayoubi, J. M., & de Ziegler, D. (2024). Telomere length: A marker for reproductive aging? Fertility and Sterility, 121 (1), 1–3. https://doi.org/10.1016/j.fertnstert.2023.10.027 DOI: https://doi.org/10.1016/j.fertnstert.2023.10.027
Korneenko, T. V., & Pestov, N. B. (2023). Oncogenic BRCA1/2 mutations in the human lineage—A by-product of sexual selection? Biomedicines, 12 (1), 22–38. https://doi.org/10.3390/biomedicines12010022 DOI: https://doi.org/10.3390/biomedicines12010022
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Boskhomdzhieva Mira Vladimirovna, Nikolaev Alexander Arkadyevich, Ploskonos Maria Vyacheslavovna

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.