KINETICS AND MECHANISM OF ELECTRON-TRANSFER REACTION : OXIDATION OF N-BUTANALDEHYDE BY N-CHLOROISONICOTINAMIDE IN AQUEOUS ACETIC ACID MEDIUM

Authors

  • Birendra Singh Department of Chemistry, Govt. Model Science College, Rewa-4860001 (M.P.) India.
  • Umesh Kumar Vishwakarma Department of Chemistry, Govt. Model Science College, Rewa-4860001 (M.P.) India.

DOI:

https://doi.org/10.29121/granthaalayah.v13.i2.2025.5991

Keywords:

N-Butanaldehyde, N-Chloroisonicotinamide, Stoichiometry, Kinetics, Oxidation

Abstract [English]

N-chloroisonicotinamide uncatalyzed oxidation of butanaldehyde in aqueous acetic acid, and sulfuric acid medium was investigated at 313 K. Data indicate the reaction follows identical kinetics with first-order in [oxidant]. The reaction rate shows direct proportionality with respect to low [substrate], which tends to become zero-order at higher concentrations of the butanaldehyde, and inverse fractional-order in [H+] that follows kobs = a + b [H+]. The rate increased with decreasing dielectric constant of the medium. The variation of ionic strength, and the addition of reaction product (isonicotinamide) had no significant effect on reaction rate. The stoichiometric ratio was assigned 1:1 in H2O+Cl reacting species of oxidant mechanism with rupturing C-H bond of substrate to yield n-butyric acid product. The activation parameters associated with the rate-determining step have been computed. The proposed mechanism, and the derived rate law are consistent with the observed kinetic data.

Downloads

Download data is not yet available.

References

Aandam, S., & Gopalan, R. (1979). Indian Journal of Chemistry Section A, 17A(6), 629.

Agrawal, A., Choudhary, K., & Banerji, K. K. (1990). Journal of Chemical Research, 5, 86-87.

Alhaji, N. M. I., Uduman Mohideen, A. M., & Kalamathi. (2011). E-Journal of Chemistry, 8(1), 1-8.

Asghar, B. H., Malik, S., & Mansoor Sheikh, S. (2019). Arabian Journal of Chemistry, 12, 1252-1259. https://doi.org/10.1016/j.arabjc.2014.10.047 DOI: https://doi.org/10.1016/j.arabjc.2014.10.047

Bell, R. P. (1968). Advances in Physical Organic Chemistry, 4, 1.

Chaurasia, S. K., & Tiwari, S. (2023). International Journal of Science Development and Research, 8(7), 867-871.

Edwards, J. O. (1964). Inter Science. New York: Wiley.

Freeman, F., Brant, J. B., Heser, N. B., Kamego, A. A., Kasner, M. L., McLaughlin, T. G., & Paull, E. W. (1970). Journal of Organic Chemistry, 35, 982. https://doi.org/10.1021/jo00829a025 DOI: https://doi.org/10.1021/jo00829a025

Greenzaid, P., Rappoport, Z., & Samuel, D. (1967). Transactions of the Faraday Society, 63, 2131. https://doi.org/10.1039/tf9676302131 DOI: https://doi.org/10.1039/tf9676302131

Kemp, J. J. (1972). In Bamford, O. C. H. & Tipper, C. F. H. (Eds.), Comprehensive Chemical Kinetics (Vol. 7, p. 4). Elsevier, New York.

Kol, S., Singh, S. K., Sharma, K. N., Verma, B., & Suryavanshi, S. (2019). E-Journal of Advanced Research, 5(1), 35-44. https://doi.org/10.1016/j.jare.2018.12.005 DOI: https://doi.org/10.1016/j.jare.2018.12.005

Kumar, P., Pandey, D., & Kothari, S. (2011). Croatica Chemica Acta, 84(1), 6212-6224.

Manadevappa, D. S., Jadhav, M. B., & Naidu, H. M. K. (1981). Journal of the Indian Chemical Society, 58, 454.

Panwar, S., Pohani, S., Swami, P., Vyas, S., & Sharma, P. K. (2013). European Chemical Bulletin, 2(11), 904-909.

Perrin, D. D., Perrin, D. R., & Armarego, W. L. (1966). Purification of Organic Compounds. Oxford: Pergamon Press.

Priya, V., & Mathiyalagan, N. (2011). Asian Journal of Chemistry, 623(4), 1871-1872.

Priya, V., & Subalakshmi, M. (2019). International Journal of Innovative Science, Engineering, and Technology, 6, 12. https://doi.org/10.31788/RJC.2019.1235213 DOI: https://doi.org/10.31788/RJC.2019.1235213

Priya, V., & Subalakshmi, M. (2018). International Journal of Research in Applied Science and Engineering Technology, 61(1), 2099-2103. https://doi.org/10.22214/ijraset.2018.1330 DOI: https://doi.org/10.22214/ijraset.2018.1330

Pushpalatha, L. (2015). International Letters of Chemistry, Physics, and Astronomy, 52, 111-119. https://doi.org/10.56431/p-np5y9f DOI: https://doi.org/10.56431/p-np5y9f

Puttaswami, M., Anuradha, T. M., Ramachandrappa, R., & Made Gowda, N. M. (2000). International Journal of Chemical Kinetics, 32, 221. https://doi.org/10.1002/(SICI)1097-4601(2000)32:4<221::AID-KIN4>3.3.CO;2-T DOI: https://doi.org/10.1002/(SICI)1097-4601(2000)32:4<221::AID-KIN4>3.3.CO;2-T

SenGupta, K., Samadar, H. P., Sen, P. K., & Banerjee, A. (1982). Journal of the American Chemical Society, 82, 3022-3263.

Sharma, J., Singadiya, A., Prakash, O. M., & Sharma, V. M. F. C. (2021). Journal of Emerging Technologies and Innovative Research, 8(4), 167-173.

Vogel, A. I. (2010). Elementary Practical Organic Chemistry.

Downloads

Published

2025-03-13

How to Cite

Singh, B., & Vishwakarma, U. K. (2025). KINETICS AND MECHANISM OF ELECTRON-TRANSFER REACTION : OXIDATION OF N-BUTANALDEHYDE BY N-CHLOROISONICOTINAMIDE IN AQUEOUS ACETIC ACID MEDIUM. International Journal of Research -GRANTHAALAYAH, 13(2), 135–142. https://doi.org/10.29121/granthaalayah.v13.i2.2025.5991