FOURIER TRANSFORM INFRARED SPECTROSCOPIC (FT-IR) STUDY OF DICOFOL-INDUCED STRUCTURAL AND BIOCHEMICAL PERTURBATIONS ON RATTUS NORVEGICUS TESTIS.

Authors

  • Manjunath GP PhD., Student, Environmental Toxicology and Molecular Biology Laboratory, Department of PG Studies and Research in Zoology, Karnatak University, Dharwad- 580003
  • Dr. M. David Professor, Environmental Toxicology and Molecular Biology Laboratory, Department of PG Studies and Research in Zoology, Karnatak University, Dharwad- 580003

DOI:

https://doi.org/10.29121/granthaalayah.v12.i11.2024.5860

Keywords:

Dicofol, FT-IR Study, Male Wistar Rat, Testis, Histology

Abstract [English]

Extensive industrial use and reputation as a pervasive environmental pollutant, organochlorine toxicity has received a lot of attention in recent years. In order to assess the organochlorine acaricide Dicofol's (DCF) toxic effects on the rat reproductive system at the molecular level, the present study employed histopathological investigations and the FT-IR technique. Rats were randomly assigned to four groups C, D1, D2, and D3 for this purpose. For 90 days, each group was given 00, 5, 7, and 10 mg/100g of body weight. All of the FT-IR peaks and the histological analysis revealed a negligible change in the group that received lower doses of D1. The area under the peaks, which correspond to various biomolecules, significantly decreased in the groups treated with higher doses of D2 and D3. Furthermore, when comparing the testes of the D2 and D3 groups to the control group, histopathological analysis revealed mild to severe degenerative changes in seminiferous tubules at different dose levels. In summary, the higher dosage of dicofol that was chosen resulted in considerable testicular damage, which impacts male fertility. Consequently, the use of such an acaricide ought to be restricted to a planned program.

Downloads

Download data is not yet available.

References

Ahmad, A., & Ahmad, M. (2017). Deciphering the Toxic Effects of Organochlorine Pesticide, Dicofol on Human RBCs and lymphocytes. Pesticide Biochemistry and Physiology, 143, 127-134. https://doi.org/10.1016/j.pestbp.2017.08.007 DOI: https://doi.org/10.1016/j.pestbp.2017.08.007

Ahmad, M. F., Ahmad, F. A., Alsayegh, A. A., Zeyaullah, Md., AlShahrani, A. M., Muzammil, K., Saati, A. A., Wahab, S., Elbendary, E. Y., Kambal, N., Abdelrahman, M. H., & Hussain, S. (2024). Pesticides Impacts on Human Health and the Environment with their Mechanisms of Action and Possible countermeasures. Heliyon, 10(7), e29128. https://doi.org/10.1016/j.heliyon.2024.e29128 DOI: https://doi.org/10.1016/j.heliyon.2024.e29128

Ben Mukiibi, S., Nyanzi, S. A., Kwetegyeka, J., Olisah, C., Taiwo, A. M., Mubiru, E., Tebandeke, E., Matovu, H., Odongo, S., Abayi, J. J. M., Ngeno, E. C., Sillanpää, M., & Ssebugere, P. (2021). Organochlorine Pesticide Residues in Uganda's Honey as a Bioindicator of Environmental Contamination and Reproductive Health Implications to Consumers. Ecotoxicology and Environmental Safety, 214, 112094. https://doi.org/10.1016/j.ecoenv.2021.112094 DOI: https://doi.org/10.1016/j.ecoenv.2021.112094

Clark Jr., D. R., Spann, J. W., & Bunck, C. M. (1990). Dicofol (kelthane®)-induced Eggshell Thinning in Captive American Kestrels. Environmental Toxicology and Chemistry, 9(8), 1063-1069. https://doi.org/10.1002/etc.5620090813 DOI: https://doi.org/10.1002/etc.5620090813

David, M., Kartheek, R. M., & Manjunath, G. P. (2018). Acute and Sublethal Toxicity of Chlorpyrifos on Developmental Stages of Dattaphrynus Melanostictus. Journal of Applied Pharmaceutical Science, 8,(6), 087-093. https://doi.org/10.7324/JAPS.2018.8612 DOI: https://doi.org/10.7324/JAPS.2018.8612

El-Kashoury, A. A., Salama, A. F., Selim, A. I., & Mohamed, R. A. (2010). Chronic Exposure Of Dicofol Promotes Reproductive Toxicity In Male Rats. 7(3).

Fujii, Y., Haraguchi, K., Harada, K. H., Hitomi, T., Inoue, K., Itoh, Y., Watanabe, T., Takenaka, K., Uehara, S., Yang, H.-R., Kim, M.-Y., Moon, C.-S., Kim, H.-S., Wang, P., Liu, A., Hung, N. N., & Koizumi, A. (2011). Detection of Dicofol and Related Pesticides in Human Breast Milk from China, Korea and Japan. Chemosphere, 82(1), 25-31. https://doi.org/10.1016/j.chemosphere.2010.10.036 DOI: https://doi.org/10.1016/j.chemosphere.2010.10.036

Humason, G. L., & Humason, G. L. (1962). Animal Tissue Techniques (pp. 1-492). W.H. Freeman. https://doi.org/10.5962/bhl.title.5890 DOI: https://doi.org/10.5962/bhl.title.5890

Jayaraj, R., Megha, P., & Sreedev, P. (2016). Organochlorine Pesticides, their Toxic Effects on Living Organisms and their Fate in the Environment. Interdisciplinary Toxicology, 9(3-4), 90-100. https://doi.org/10.1515/intox-2016-0012 DOI: https://doi.org/10.1515/intox-2016-0012

Kartheek, R. M., & David, M. (2018). Assessment of Fipronil Toxicity on Wistar Rats: A Hepatotoxic Perspective. Toxicology Reports, 5, 448-456. https://doi.org/10.1016/j.toxrep.2018.02.019 DOI: https://doi.org/10.1016/j.toxrep.2018.02.019

Mello, M. L. S., & Vidal, B. C. (2012). Changes in the Infrared Microspectroscopic Characteristics of DNA Caused by Cationic Elements, Different Base Richness and Single-Stranded form. PloS One, 7(8), e43169. https://doi.org/10.1371/journal.pone.0043169 DOI: https://doi.org/10.1371/journal.pone.0043169

PubChem. (n.d.). Dicofol. Retrieved October 28, 2024

Qi, S.-Y., Xu, X.-L., Ma, W.-Z., Deng, S.-L., Lian, Z.-X., & Yu, K. (2022). Effects of Organochlorine Pesticide Residues in Maternal Body on Infants. Frontiers in Endocrinology, 13, 890307. https://doi.org/10.3389/fendo.2022.890307 DOI: https://doi.org/10.3389/fendo.2022.890307

Ramesh, H., & David, M. (2009). Respiratory Performance and Behavioral Responses of the Freshwater Fish, Cyprinus Carpio (Linnaeus) Under Sublethal Chlorpyrifos Exposure. Journal of Basic and Clinical Physiology and Pharmacology, 20(2), 127-139. https://doi.org/10.1515/jbcpp.2009.20.2.127 DOI: https://doi.org/10.1515/JBCPP.2009.20.2.127

Shivanoor, S. M., & David, M. (2015). Fourier Transform Infrared (FT-IR) Study on Cyanide Induced Biochemical and Structural Changes in Rat Sperm. Toxicology Reports, 2, 1347-1356. https://doi.org/10.1016/j.toxrep.2015.10.004 DOI: https://doi.org/10.1016/j.toxrep.2015.10.004

Talari, A. C. S., Martinez, M. A. G., Movasaghi, Z., Rehman, S., & Rehman, I. U. (2017). Advances in Fourier transform infrared (FTIR) Spectroscopy of Biological Tissues. Applied Spectroscopy Reviews, 52(5), 456-506. https://doi.org/10.1080/05704928.2016.1230863 DOI: https://doi.org/10.1080/05704928.2016.1230863

Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., Chu, C., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment. International Journal of Environmental Research and Public Health, 18(3), 1112. https://doi.org/10.3390/ijerph18031112 DOI: https://doi.org/10.3390/ijerph18031112

US EPA, O. (2013). 2006 IUR Resources [Other Policies and Guidance].

Vessela VitchevaDicofol (addendum). (2011). JMPR, 151-210-Google Search. (n.d.). Retrieved August 9, 2024

Zheng, Q., Li, J., Wang, Y., Lin, T., Xu, Y., Zhong, G., Bing, H., Luo, C., & Zhang, G. (2020). Levels and Enantiomeric Signatures of Organochlorine Pesticides in Chinese Forest soils: Implications for Sources and Environmental Behavior. Environmental Pollution, 262, 114139. https://doi.org/10.1016/j.envpol.2020.114139 DOI: https://doi.org/10.1016/j.envpol.2020.114139

Downloads

Published

2024-12-15

How to Cite

GP, M., & M., D. (2024). FOURIER TRANSFORM INFRARED SPECTROSCOPIC (FT-IR) STUDY OF DICOFOL-INDUCED STRUCTURAL AND BIOCHEMICAL PERTURBATIONS ON RATTUS NORVEGICUS TESTIS. International Journal of Research -GRANTHAALAYAH, 12(11), 48–55. https://doi.org/10.29121/granthaalayah.v12.i11.2024.5860