A SURVEY ON NOMA WITH THE AID OF INTELLIGENT REFLECTING SURFACE IN WIRELESS COMMUNICATION

Authors

  • Thi Dep Ha Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 700000, Viet Nam

DOI:

https://doi.org/10.29121/granthaalayah.v12.i7.2024.5718

Keywords:

NOMA, C-NOMA, IRS, IRS-aided-NOMA, UAV, IoT, V2X

Abstract [English]

Non-orthogonal multiple-access (NOMA) and its enhanced versions are potentially emerging technologies which contribute to boost the blossoming of the wireless signal propagation in the mobile and IoT era. In this paper, an overview of the NOMA communication mechanism with the aid of intelligent reflecting surface (IRS) is presented. The survey shows that the IRS-based NOMA allows communicating even in the areas with the weakest signals so that the NOMA-aided wireless designers can have an insight into improving the performance of wireless communication networks. In particular, a comparison of key characteristics of NOMA with IRSs and relays is also presented. In addition, the challenges and applications of this type of NOMA are also discussed. Besides, the formulas of the signals at the sources and destinations of background NOMA communication systems are also analyzed. This survey thus provides a background of IRS-employed NOMA for deeper studies of this technology.

Downloads

Download data is not yet available.

References

Al-Obiedollah, H., Salameh, H. A. B., Cumanan, K., Ding, Z., & Dobre, O. A. (2023). Self-Sustainable Multi-IRS-Aided Wireless Powered Hybrid TDMA-NOMA System. IEEE Access, 11, 57428-57436. https://doi.org/10.1109/ACCESS.2023.3284317 DOI: https://doi.org/10.1109/ACCESS.2023.3284317

Aldababsa, M., Toka, M., Gökçeli, S., Kurt, G. K., & Kucur, O. (2018). A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond. Wireless Communications and Mobile Computing, 1. https://doi.org/10.1155/2018/9713450 DOI: https://doi.org/10.1155/2018/9713450

Alkhawatrah, M. (2022). The Performance of Supervised Machine Learning Based Relay Selection in Cooperative NOMA. IEEE Access 11, 1570-1577. https://doi.org/10.1109/ACCESS.2022.3233443 DOI: https://doi.org/10.1109/ACCESS.2022.3233443

Awsathi, V., & Babu, A. V. (2021). Outage and Throughput Analysis of Full-Duplex Cooperative NOMA System with Energy Harvesting. IEEE Transactions on Vehicular Technology, 70(11), 11648-11664. https://doi.org/10.1109/TVT.2021.3112596 DOI: https://doi.org/10.1109/TVT.2021.3112596

Beddiaf, S., Khelil, A., Khennoufa, F., Kara, F., Kaya, H., Li, X., Rabie, K., & Yanikomeroglu, H. (2022). A Unified Performance Analysis of Cooperative NOMA With Practical Constraints: Hardware Impairment, Imperfect SIC and CSI. IEEE Access 10, 132931-132948. https://doi.org/10.1109/ACCESS.2022.3230650 DOI: https://doi.org/10.1109/ACCESS.2022.3230650

Budhiraja, I., Kumar, N., Tyagi, S., Tanwar, S., Han, Z., Piran, J., & Suh, D. Y. (2021). A Systematic Review on NOMA Variants for 5G and Beyond. IEEE Access, 9, 85573-85644. https://doi.org/10.1109/ACCESS.2021.3081601 DOI: https://doi.org/10.1109/ACCESS.2021.3081601

Cai, Y., Qin, Z., Cui, F., Li, G. Y., & McCann, J. A. (2017). Modulation and Multiple Access for 5G Networks. IEEE Communications Surveys & Tutorials, 20(1), 629-646. https://doi.org/10.1109/COMST.2017.2766698 DOI: https://doi.org/10.1109/COMST.2017.2766698

Cai, Y., Wei, Z., Hu, S., Liu, C., Kwan Ng, D. W., & Yuan, J. (2022). Resource Allocation and 3D Trajectory Design for Power-Efficient IRS-Assisted UAV-NOMA communications. IEEE Transactions on Wireless Communications, 21(12), 10315-10334. https://doi.org/10.1109/TWC.2022.3183300 DOI: https://doi.org/10.1109/TWC.2022.3183300

Chen, G., Wu, Q., Chen, W., Kwan Ng, D. W., & Hanzo, L. (2022). IRS-Aided Wireless Powered MEC Systems: TDMA or NOMA for Computation Offloading?. IEEE Transactions on Wireless Communications, 22(2), 1201-1218. https://doi.org/10.1109/TWC.2022.3203158 DOI: https://doi.org/10.1109/TWC.2022.3203158

Deka, K., & Sharma, S. (2022). Hybrid NOMA for Future Radio Access: Design, Potentials and Limitations. Wireless Personal Communications, 123(4), 3755-3770. https://doi.org/10.1007/s11277-021-09312-3 DOI: https://doi.org/10.1007/s11277-021-09312-3

Di Renzo, M., Zappone, A., Debbah, M., Alouini, M.-S, Yuen, C., Rosny, J.D., & Tretyakov, S. (2020). Smart Radio Environments Empowered by Reconfigurable Intelligent Surfaces: How it Works, State of Research, and the Road Ahead. IEEE Journal on Selected Areas in Communications, 38(11), 2450-2525. https://doi.org/10.1109/JSAC.2020.3007211 DOI: https://doi.org/10.1109/JSAC.2020.3007211

Ding, Z., Dai, H., & Poor, H.V. (2016). Relay Selection for Cooperative NOMA. IEEE Wireless Communications Letters, 5(4), 416-419. https://doi.org/10.1109/LWC.2016.2574709 DOI: https://doi.org/10.1109/LWC.2016.2574709

Ding, Z., Lv, L., Fang, F., Dobre, O.A., Karagiannidis, G.K., Al-Dhahir, N., Schober, & Poor, H.V. (2022). A State-of-the-Art Survey on Reconfigurable Intelligent Surface-Assisted Non-Orthogonal Multiple Access Networks. Proceedings of the IEEE, 110(9), 1358-1379. https://doi.org/10.1109/JPROC.2022.3174140 DOI: https://doi.org/10.1109/JPROC.2022.3174140

Ding, Z., Schober, R., & Poor, H.V. (2020). On the Impact of Phase Shifting Designs on IRS-NOMA. IEEE Wireless Communications Letters, 9(10), 1596-1600. https://doi.org/10.1109/LWC.2020.2991116 DOI: https://doi.org/10.1109/LWC.2020.2991116

Fang, F. A. N. G., Xu, Y., Pham, Q.-V., & Ding, Z. (2020). Energy-Efficient Design of IRS-NOMA Networks. IEEE Transactions on Vehicular Technology, 69(11), 14088-14092. https://doi.org/10.1109/TVT.2020.3024005 DOI: https://doi.org/10.1109/TVT.2020.3024005

Fu, M., Mei, W., & Zhang, R. (2023). Multi-Active/Passive-IRS Enabled Wireless Information and Power Transfer: Active IRS Deployment and Performance Analysis. IEEE Communications Letters, 27(8), 2217-2221. https://doi.org/10.1109/LCOMM.2023.3287573 DOI: https://doi.org/10.1109/LCOMM.2023.3287573

Gao, C., Yang, B., Zheng, D., Jiang, X., & Taleb, T. (2023). Cooperative Jamming and Relay Selection for Covert Communications in Wireless Relay Systems. IEEE Transactions on Communications. https://doi.org/10.1109/TCOMM.2023.3327272 DOI: https://doi.org/10.1109/TCOMM.2023.3327272

Gong, S., Lu, X., Hoang, D.T., Niyato, D., Shu, L., Kim, D.I., & Liang, Y.-C. (2020). Toward Smart Wireless Communications via Intelligent Reflecting Surfaces: A Contemporary Survey. IEEE Communications Surveys & Tutorials, 22(4), 2283-2314. https://doi.org/10.1109/COMST.2020.3004197 DOI: https://doi.org/10.1109/COMST.2020.3004197

Hassan, M., Singh, M., Hamid, K., Saeed, R., Abdelhaq, M., & Alsaqour, R. (2022). Design of Power Location Coefficient System for 6G Downlink Cooperative NOMA Network. Energies, 15(19). https://doi.org/10.3390/en15196996 DOI: https://doi.org/10.3390/en15196996

Huang, Z., Zheng, B., & Zhang, R. (2023). Roadside IRS-Aided Vehicular Communication: Efficient Channel Estimation and Low-Complexity Beamforming Design. IEEE Transactions on Wireless Communications, 22(9), 5976-5989. https://doi.org/10.1109/TWC.2023.3238850 DOI: https://doi.org/10.1109/TWC.2023.3238850

Ihsan, A., Chen, W., Asif, M., Khan, W.U., & Li, J. (2022). Energy-Efficient IRS-Aided NOMA Beamforming for 6G Wireless Communications. https://doi.org/10.1109/TGCN.2022.3209617 DOI: https://doi.org/10.1109/TGCN.2022.3209617

Islam, S.M.R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2016). Power-Domain Non-Orthogonal Multiple Access (NOMA) in 5G Systems: Potentials and Challenges. IEEE Communications Surveys & Tutorials, 19(2), 721-742. https://doi.org/10.1109/COMST.2016.2621116 DOI: https://doi.org/10.1109/COMST.2016.2621116

Jiao, S., Fang, F., Zhou, X., & Zhang, H. (2020). Joint Beamforming and Phase Shift Design in Downlink UAV Networks with IRS-Assisted NOMA. Journal of Communications and Information Networks, 5(2). 138-149. https://doi.org/10.23919/JCIN.2020.9130430 DOI: https://doi.org/10.23919/JCIN.2020.9130430

Kara, F., & Kaya, H. (2018). BER Performances of Downlink and Uplink NOMA in the Presence of SIC Errors Over Fading Channels. Iet Communications, 12(15), 1834-1844. https://doi.org/10.1049/iet-com.2018.5278 DOI: https://doi.org/10.1049/iet-com.2018.5278

Li, H., Chen, Y., Zhu, M., Sun, J., Do, D.-T., Menon, V.G., & Shynu, P. G. (2020). Secrecy Outage Probability of Relay Selection Based Cooperative NOMA for IoT Networks. IEEE Access 9, 1655-1665. https://doi.org/10.1109/ACCESS.2020.3047136 DOI: https://doi.org/10.1109/ACCESS.2020.3047136

Li, S., Bariah, L., Muhaidat, S., Sofotasios, P.C., Liang, J., & Wang, A. (2020). SWIPT-Enabled Cooperative NOMA with mth Best Relay Selection. IEEE Open Journal of the Communications Society, 1, 1798-1807. https://doi.org/10.1109/OJCOMS.2020.3038197 DOI: https://doi.org/10.1109/OJCOMS.2020.3038197

Li, X., Xie, Z., Chu, Z., Menon, V.G., Mumtaz, S., & Zhang, J. (2022). Exploiting Benefits of IRS in Wireless Powered NOMA Networks. IEEE Transactions on Green Communications and Networking, 6(1), 175-186. https://doi.org/10.1109/TGCN.2022.3144744 DOI: https://doi.org/10.1109/TGCN.2022.3144744

Liaqat, M., Noordin, K. A., Latef, T. A., Dimyati, K., Ding, Z., Siddiqui, A. M., Ahmed, A., & Younas, T. (2019). Relay Selection Schemes for Cooperative NOMA (C-NOMA) with Simultaneous Wireless Information and Power Transfer (SWIPT). Physical Communication, 36. https://doi.org/10.1016/j.phycom.2019.100823 DOI: https://doi.org/10.1016/j.phycom.2019.100823

Lima, B.K.S., Sena, A.S.D., Dinis, R., Da Costa, D.B., Beko, M., Oliveira, R., & Debbah, M. (2022). Aerial Intelligent Reflecting Surfaces in MIMO-NOMA Networks: Fundamentals, Potential Achievements, and Challenges. IEEE Open Journal of the Communications Society, 3, 1007-1024. https://doi.org/10.1109/OJCOMS.2022.3182223 DOI: https://doi.org/10.1109/OJCOMS.2022.3182223

Liu, G., Wang, Z., Hu, J., Ding, Z., & Fan, P. (2019). Cooperative NOMA Broadcasting/Multicasting for Low-Latency and High-Reliability 5G Cellular V2X Communications. IEEE Internet of Things Journal, 6(5), 7828-7838. https://doi.org/10.1109/JIOT.2019.2908415 DOI: https://doi.org/10.1109/JIOT.2019.2908415

Liu, Y., Qin, Z., Elkashlan, M., Ding, Z., Nallanathan, A., & Hanzo, L. (2017). Non-Orthogonal Multiple Access for 5G and Beyond. Proceedings of the IEEE 105(12), 2347-2381. https://doi.org/10.1109/JPROC.2017.2768666 DOI: https://doi.org/10.1109/JPROC.2017.2768666

Mu, X., Liu, Y., Guo, L., Lin, J., & Al-Dhahir, N. (2020). Exploiting Intelligent Reflecting Surfaces in NOMA Networks: Joint Beamforming Optimization. IEEE Transactions on Wireless Communications, 19(10), 6884-6898. https://doi.org/10.1109/TWC.2020.3006915 DOI: https://doi.org/10.1109/TWC.2020.3006915

Naeem, F., Kaddoum, G., Khan, S., Khan, K.S., & Adam, N. (2022). IRS-Empowered 6G Networks: Deployment Strategies, Performance Optimization, and Future Research Directions. IEEE Access 10, 118676-118696. https://doi.org/10.1109/ACCESS.2022.3220682 DOI: https://doi.org/10.1109/ACCESS.2022.3220682

Ni, W., Liu, X., Liu, Y., Tian, H., & Chen, Y. (2021). Resource Allocation for Multi-Cell IRS-aided NOMA Networks. IEEE Transactions on Wireless Communications, 20(7), 4253-4268. https://doi.org/10.1109/TWC.2021.3057232 DOI: https://doi.org/10.1109/TWC.2021.3057232

Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-Orthogonal Multiple Access (NOMA) for Cellular Future Radio Access. In 2013 IEEE 77th Vehicular Technology Conference (VTC Spring), 1-5. https://doi.org/10.1109/VTCSpring.2013.6692652 DOI: https://doi.org/10.1109/VTCSpring.2013.6692652

Wang, W., Cao, Y., Sheng, M., Tang, J., Zhao, N., Niyato, D., & Wong, K.-K. (2022). Secure Beamforming for IRS-Enhanced NOMA Networks. IEEE Wireless Communications 30(1), 134-140. https://doi.org/10.1109/MWC.012.2100639 DOI: https://doi.org/10.1109/MWC.012.2100639

Wang, W., Liu, X., Tang, J., Zhao, N., Chen, Y., Ding, Z., & Wang, X. (2021). Beamforming and Jamming Optimization for IRS-Aided Secure NOMA Networks. IEEE Transactions on Wireless Communications, 21(3), 1557-1569. https://doi.org/10.1109/TWC.2021.3104856 DOI: https://doi.org/10.1109/TWC.2021.3104856

Wei, X., Al-Obiedollah, H., Cumanan, K., Wang, W., Ding, Z., & Dobre, O. A. (2022). Spectral-Energy Efficiency Trade-off Based Design for Hybrid TDMA-NOMA System. IEEE Transactions on Vehicular Technology, 71(3), 3377-3382. https://doi.org/10.1109/TVT.2022.3141969 DOI: https://doi.org/10.1109/TVT.2022.3141969

Wei, Z., Guo, J., Ng, D.W.K., & Yuan, J. (2017). Fairness Comparison of Uplink NOMA and OMA. In 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-6. IEEE. https://doi.org/10.1109/VTCSpring.2017.8108680 DOI: https://doi.org/10.1109/VTCSpring.2017.8108680

Wei, Z., Yuan, J., Ng, D.W.K., Elkashlan, M., & Ding, Z. (2016). A Survey of Downlink Non-Orthogonal Multiple Access for 5G Wireless Communication Networks. https://doi.org/10.48550/arXiv.1609.01856

Yang, Z., Ding, Z., Fan, P., & Al-Dhahir, N. (2017). The Impact of Power Allocation on Cooperative Non-Orthogonal Multiple Access Networks with SWIPT. IEEE Transactions on Wireless Communications, 16(7), 4332-4343. https://doi.org/10.1109/TWC.2017.2697380 DOI: https://doi.org/10.1109/TWC.2017.2697380

Yu, J., Li, Y., Liu, X., Sun, B., Wu, Y., & Tsang, D. H.-K. (2022). IRS Assisted NOMA Aided Mobile Edge Computing with Queue Stability: Heterogeneous Multi-Agent Reinforcement Learning. IEEE Transactions on Wireless Communications, 22(7), 4296-4312. https://doi.org/10.1109/TWC.2022.3224291 DOI: https://doi.org/10.1109/TWC.2022.3224291

Yue, X., Liu, Y., Kang, S., Nallanathan, A., & Ding, Z. (2018). Spatially Random Relay Selection for Full/Half-Duplex Cooperative NOMA Networks. IEEE Transactions on Communications, 66(8), 3294-3308. https://doi.org/10.1109/TCOMM.2018.2809740 DOI: https://doi.org/10.1109/TCOMM.2018.2809740

Zeng, M., Hao, W., Dobre, O.A., & Ding, Z. (2020). Cooperative NOMA: State of the Art, Key Techniques, and Open Challenges. IEEE Network, 34(5), 205-211. https://doi.org/10.1109/MNET.011.1900601 DOI: https://doi.org/10.1109/MNET.011.1900601

Zhang, D., Wu, Q., Cui, M., Zhang, G., & Niyato, D. (2021). Throughput Maximization for IRS-Assisted Wireless Powered Hybrid NOMA and TDMA. IEEE Wireless Communications Letters, 10(9), 1944-1948. https://doi.org/10.1109/LWC.2021.3087495 DOI: https://doi.org/10.1109/LWC.2021.3087495

Zheng, B., Wang, X., Wen, M., & Chen, F. (2017). NOMA-Based Multi-Pair Two-Way Relay Networks with Rate Splitting and Group Decoding. IEEE Journal on Selected Areas in Communications, 35(10), 2328-2341. https://doi.org/10.1109/JSAC.2017.2726008 DOI: https://doi.org/10.1109/JSAC.2017.2726008

Zhu, Y., Mao, B., & Kato, N. (2022). Intelligent Reflecting Surface in 6G Vehicular Communications: A Survey. IEEE Open Journal of Vehicular Technology, 3, 266-277. https://doi.org/10.1109/OJVT.2022.3177253 DOI: https://doi.org/10.1109/OJVT.2022.3177253

Zuo, J., Liu, Y., Basar, E., & Dobre, O. A. (2020). Intelligent Reflecting Surface Enhanced Millimeter-Wave NOMA Systems. IEEE Communications Letters, 24(11), 2632-2636. https://doi.org/10.1109/LCOMM.2020.3009158 DOI: https://doi.org/10.1109/LCOMM.2020.3009158

Downloads

Published

2024-08-01

How to Cite

Ha, T. D. (2024). A SURVEY ON NOMA WITH THE AID OF INTELLIGENT REFLECTING SURFACE IN WIRELESS COMMUNICATION. International Journal of Research -GRANTHAALAYAH, 12(7), 64–81. https://doi.org/10.29121/granthaalayah.v12.i7.2024.5718