EFFECT OF CALCINATION TEMPERATURE VARIATION ON GREEN SYNTHESIS OF CADMIUM SULFIDE FOR CIPROFLOXACIN PHOTODEGRADATION

Authors

  • Aminatul Haq Faizah Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
  • Gunawan Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
  • Khabibi Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia
  • Roni Adi Wijaya Department of Chemistry, Diponegoro University, Semarang, 50275, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v12.i6.2024.5681

Keywords:

Cadmium Sulfide, Green Synthesis, Calcination, Photocatalytic, Ciprofloxacin

Abstract [English]

The green synthesis method has been successfully carried out to CdS with tea leaf extract and calcination temperature variation for the application of photocatalytic degradation of ciprofloxacin antibiotic. Variations in calcination at temperatures of 500, 600, and 700 ℃ were carried out to determine the effect of temperature on morphology and elemental composition, crystal structure and size, functional groups, and band gap energy by SEM-EDX, XRD, FTIR, and UV-DRS Spectrophotometer. The SEM-EDX image of the synthesized CdS is smooth and spherical and there is agglomeration with an even distribution of elements. The results of XRD and FTIR characterization showed the CdS peaks. The size of the CdS crystal increased with increasing temperature, namely CdS-600 at 64 nm and CdS-700 at 81.58 nm. The band gap energy value is influenced by the calcination temperature during synthesis with the band gap energy values of CdS-600 2.3 eV and CdS-700 2.38 eV. The percentage of CdS effectiveness with variations in calcination temperature in ciprofloxacin photodegradation is CdS-500 at 32.18%, CdS-600 at 48.72%, and CdS-700 at 8.73%. The optimum condition of CdS synthesis in degrading ciprofloxacin by photocatalytic process occurs at a temperature of 600℃ with a photocatalytic irradiation time under visible light for 120 minutes, a CdS mass of 10 mg, and an initial concentration of ciprofloxacin of 25 ppm. This result demonstrates the potential of an environmentally friendly method that can be applied in wastewater treatment.

Downloads

Download data is not yet available.

References

Akerdi, A. G., & Bahrami, S. H. (2019). Application of Heterogeneous Nano-Semiconductors for Photocatalytic Advanced Oxidation of Organic Compounds: A Review. Journal of Environmental Chemical Engineering, 7(5). https://doi.org/10.1016/J.JECE.2019.103283 DOI: https://doi.org/10.1016/j.jece.2019.103283

Aprilianingrum, F. A. (2016). Optimasi Dan Regenerasi Fotokatalis Ca. Universitas Negeri Yogyakarta.

Asadah, E., Hadisantoso, E. P., Soni Setiadji, D., Kimia, J., Sains, F., Teknologi, D., Gunung, S., Bandung, D., Nasution, J. A. H., 105 A, N., Cibiru, C., & Jawa Barat, B. (2022). Pengaruh Suhu Kalsinasi Terhadap Sintesis Kadmium Sulfida (Cds) Menggunakan Metode Presipitasi untuk Penanganan Metilen Biru Secara Fotokatalisis. Gunung Djati Conference Series, 7, 60–69.

Bakhsh, E. M., & Khan, M. I. (2022). Clove Oil-Mediated Green Synthesis of Silver-Doped Cadmium Sulfide and Their Photocatalytic Degradation Activity. Inorganic Chemistry Communications, 138(November 2021). https://doi.org/10.1016/j.inoche.2022.109256 DOI: https://doi.org/10.1016/j.inoche.2022.109256

Barra Caracciolo, A., Topp, E., & Grenni, P. (2015). Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A review. Journal of Pharmaceutical and Biomedical Analysis, 106, 25–36. https://doi.org/10.1016/J.JPBA.2014.11.040 DOI: https://doi.org/10.1016/j.jpba.2014.11.040

Chauhan, J. K. R. P. (2020). Effect of Temperature on Properties of Cadmium Sulfide Nanostructures Synthesized by Solvothermal method. Journal of Materials Science: Materials in Electronics. https://doi.org/10.1007/s10854-019-02807-7 DOI: https://doi.org/10.1007/s10854-019-02807-7

Cheng, H., Wang, J., Zhao, Y., & Han, X. (2014). Effect of Phase Composition, Morphology, and Specific Surface Area on the Photocatalytic Activity of TiO2 Nanomaterials. RSC Advances, 4(87), 47031–47038. https://doi.org/10.1039/C4RA05509H DOI: https://doi.org/10.1039/C4RA05509H

Chopra, S., & Kumar, D. (2017). Ibuprofen as an Emerging Organic Contaminant in Environment, Distribution and Remediation. https://doi.org/10.1016/j.heliyon.2020.e04087 DOI: https://doi.org/10.1016/j.heliyon.2020.e04087

Dolatabadi, J. E. N. (2011). Molecular Aspects on the Interaction of Quercetin and its Metal Complexes with DNA. International Journal of Biological Macromolecules, 48(2), 227–233. https://doi.org/10.1016/J.IJBIOMAC.2010.11.012 DOI: https://doi.org/10.1016/j.ijbiomac.2010.11.012

Dsikowitzky, L., & Schwarzbauer, J. (2014). Industrial Organic Contaminants: Identification, Toxicity and Fate in the Environment. Environmental Chemistry Letters, 12(3), 371–386. https://doi.org/10.1007/S10311-014-0467-1/METRICS DOI: https://doi.org/10.1007/s10311-014-0467-1

Gunawan, Adi Wijaya, R., Suseno, A., Lusiana, R. A., Septina, W., & Harada, T. (2023). Synthesis of CuInS2 thin Film Photocathode with Variation of Sulfurization Sources and Pt-In2S3 Modification for Photoelectrochemical Water Splitting. Journal of Electroanalytical Chemistry, 945. https://doi.org/10.1016/J.JELECHEM.2023.117683 DOI: https://doi.org/10.1016/j.jelechem.2023.117683

Gunawan, G., Megawati, S. G. L., Prasetya, N. B. A., & Wijaya, R. A. (2022). Synthesis, Characterization of Ag2s from AgCl Waste of Argentometry Titration with Heating Temperature Variations and Its Application as a Temperature Sensor Based on Negative Temperature Coefficient (NTC). Jurnal Kimia Sains Dan Aplikasi, 25(8), 292–299. https://doi.org/10.14710/JKSA.25.8.292-299 DOI: https://doi.org/10.14710/jksa.25.8.292-299

Gunawan, G., Prasetya, N. B. A., & Wijaya, R. A. (2023). Degradation of Ciprofloxacin (CIP) Antibiotic Waste using The Advanced Oxidation Process (AOP) Method with Ferrate (VI) from Extreme Base Electrosynthesis. Trends in Sciences, 20(7). https://doi.org/10.48048/TIS.2023.6639 DOI: https://doi.org/10.48048/tis.2023.6639

Kelly, K. R., & Brooks, B. W. (2018). Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. Progress in Molecular Biology and Translational Science, 159, 59–77. https://doi.org/10.1016/BS.PMBTS.2018.07.004 DOI: https://doi.org/10.1016/bs.pmbts.2018.07.004

Kumar, R. N., Sadaf, S., Verma, M., Chakraborty, S., Kumari, S., Polisetti, V., Kallem, P., Iqbal, J., & Banat, F. (2023). Old Landfill Leachate and Municipal Wastewater Co-Treatment by Sequencing Batch Reactor Combined with Coagulation–Flocculation Using Novel Flocculant. Sustainability (Switzerland), 15(10), 8205. https://doi.org/10.3390/SU15108205/S1 DOI: https://doi.org/10.3390/su15108205

Kumar, S., & Sharma, J. K. (2016). Stable Phase CdS Nanoparticles for Optoelectronics: A Study On Surface Morphology, Structural and Optical Characterization. Materials Science- Poland, 34(2), 368–373. https://doi.org/10.1515/MSP-2016-0033 DOI: https://doi.org/10.1515/msp-2016-0033

Lang, D., Xiang, Q., Qiu, G., Feng, X., & Liu, F. (2014). Effects of Crystalline Phase and Morphology on the Visible Light Photocatalytic H2-Production Activity of CdS Nanocrystals. Dalton Transactions, 43(19), 7245–7253. https://doi.org/10.1039/C3DT53601G DOI: https://doi.org/10.1039/C3DT53601G

Majumder, S., Gupta, S., & Raghuvanshi, S. (2014). Removal of Dissolved Metals by Bioremediation. Heavy Metals in Water, 44–56. https://doi.org/10.1039/9781782620174-00044 DOI: https://doi.org/10.1039/9781782620174-00044

Mathur, P., Sanyal, D., Callahan, D. L., Conlan, X. A., & Pfeffer, F. M. (2021). Treatment Technologies to Mitigate the Harmful Effects of Recalcitrant Fluoroquinolone Antibiotics on the Environment and Human Health. Environmental Pollution, 291. https://doi.org/10.1016/J.ENVPOL.2021.118233 DOI: https://doi.org/10.1016/j.envpol.2021.118233

Munyai, S., Tetana, Z. N., Mathipa, M. M., Ntsendwana, B., & Hintsho-Mbita, N. C. (2021). Green Synthesis of Cadmium Sulphide Nanoparticles for the Photodegradation of Malachite Green Dye, Sulfisoxazole and Removal of Bacteria. Optik, 247. https://doi.org/10.1016/J.IJLEO.2021.167851 DOI: https://doi.org/10.1016/j.ijleo.2021.167851

Shehu Imam, S., Adnan, R., & Mohd Kaus, N. H. (2018). Photocatalytic Degradation of Ciprofloxacin in Aqueous Media: A Short Review. Toxicological & Environmental Chemistry, 100(5–7), 518–539. https://doi.org/10.1080/02772248.2018.1545128 DOI: https://doi.org/10.1080/02772248.2018.1545128

Shen, L., Liang, S., Wu, W., Liang, R., & Wu, L. (2013). CdS-Decorated UiO–66(NH2) Nanocomposites Fabricated by a Facile Photodeposition Process: An Efficient and Stable Visible-Light-Driven Photocatalyst for Selective Oxidation of Alcohols. Journal of Materials Chemistry A, 1(37), 11473–11482. https://doi.org/10.1039/C3TA12645E DOI: https://doi.org/10.1039/c3ta12645e

Shivaji, K., Mani, S., Ponmurugan, P., De Castro, C. S., Lloyd Davies, M., Balasubramanian, M. G., & Pitchaimuthu, S. (2018). Green-Synthesis-Derived CdS Quantum Dots Using Tea Leaf Extract: Antimicrobial, Bioimaging, and Therapeutic Applications in Lung Cancer Cells. ACS Applied Nano Materials, 1(4), 1683–1693. https://doi.org/10.1021/acsanm.8b00147 DOI: https://doi.org/10.1021/acsanm.8b00147

Usman, M. R., Prasasti, A., Fajriyah, S., Marita, A. W., Islamiah, S., Firdaus, A. N., Noviyanti, A. R., & Eddy, D. R. (2021). Degradation of Ciprofloxacin by Titanium Dioxide (TiO2) Nanoparticles: Optimization of Conditions, Toxicity, and Degradation Pathway. Bulletin of Chemical Reaction Engineering & Catalysis, 16(4), 752–762. https://doi.org/10.9767/bcrec.16.4.11355.752-762 DOI: https://doi.org/10.9767/bcrec.16.4.11355.752-762

Verma, V., & Singh, S. V. (2023). Augmentation of Photocatalytic Degradation of Methylene Blue Dye Using Lanthanum and Iodine Co-Doped TiO2 Nanoparticles, Their Regeneration and Reuse; and Preliminary Phytotoxicity Studies for Potential use of Treated Water. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/J.JECE.2023.111339 DOI: https://doi.org/10.1016/j.jece.2023.111339

Xiao, J., Wen, B., Melnik, R., Kawazoe, Y., & Zhang, X. (2014). Phase Transformation of Cadmium Sulfide Under High Temperature and High Pressure Conditions. Physical Chemistry Chemical Physics, 16(28), 14899–14904. https://doi.org/10.1039/C4CP01003E DOI: https://doi.org/10.1039/c4cp01003e

Zhao, W., Li, Y., Zhao, P., Zhang, L., Dai, B., Xu, J., Huang, H., He, Y., & Leung, D. Y. C. (2021). Novel Z-Scheme Ag-C3N4/SnS2 Plasmonic Heterojunction Photocatalyst for Degradation of Tetracycline and H2 Production. Chemical Engineering Journal, 405, 126555. https://doi.org/10.1016/J.CEJ.2020.126555 DOI: https://doi.org/10.1016/j.cej.2020.126555

Zhao, Y., Li, Y., & Sun, L. (2021). Recent Advances in Photocatalytic Decomposition of Water and Pollutants for Sustainable Application. Chemosphere, 276. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130201 DOI: https://doi.org/10.1016/j.chemosphere.2021.130201

Zhou, G. J., Li, S. H., Zhang, Y. C., & Fu, Y. Z. (2014). Biosynthesis of CdS Nanoparticles in Banana Peel Extract. Journal of Nanoscience and Nanotechnology, 14(6), 4437–4442. https://doi.org/10.1166/JNN.2014.8259 DOI: https://doi.org/10.1166/jnn.2014.8259

Downloads

Published

2024-06-30

How to Cite

Faizah, A. H., Gunawan, Khabibi, & Wijaya, R. A. (2024). EFFECT OF CALCINATION TEMPERATURE VARIATION ON GREEN SYNTHESIS OF CADMIUM SULFIDE FOR CIPROFLOXACIN PHOTODEGRADATION. International Journal of Research -GRANTHAALAYAH, 12(6), 17–30. https://doi.org/10.29121/granthaalayah.v12.i6.2024.5681