MAXIMIZING AGRICULTURAL WATER EFFICIENCY: INTEGRATING IOT AND SUPERVISED LEARNING FOR SMART IRRIGATION OPTIMIZATION

Authors

  • Krishan Kumar Research Scholar, Computer Science and Engineering, GLOCAL University, Mirzapur Pole, Saharanpur, U.P., India
  • Dr. Rakesh K Yadav Professor, Computer Science and Engineering, GLOCAL University, Mirzapur Pole, Saharanpur, U.P., India

DOI:

https://doi.org/10.29121/granthaalayah.v12.i6.2024.5663

Keywords:

Irrigation, IoT, Machine Learning, Precipitation

Abstract [English]

Optimum utilization of clean water around the globe is essential in order to avoid scarcity. In agriculture, due to the lack of intelligent irrigation systems, consumes more amount of fresh water. Smart irrigation using IoT technologies can solve the problem by achieving effective utilization of water. By examining ground parameters such soil temperature, air moisture, soil moisture, humidity, and weather data (precipitation) from the website, this research project forecasts the irrigation schedule. When designing intelligent irrigation, soil moisture is a key consideration. It is suggested that a hybrid machine learning algorithm be used to estimate the soil moisture for the next days using field, environmental, and weather data in order to accomplish smart irrigation. The field data are gathered by sensors and are transmitted via wifi to the server and the web-based interface is developed to visualize the current field data, weather data, and schedule of the next irrigation. The system is fully autonomous which starts and stops the irrigation based on the result of the algorithm. This work depicts the architecture of the system and describes the information processing of the results for a month. The accuracy of the propsed algorithm is good and has a minimum error rate of predicted soil moisture.

Downloads

Download data is not yet available.

References

Abdullah, A., Enazi, S. A., & Damaj, I. (2016). AgriSys: A Smart and Ubiquitous Controlled-Environment Agriculture System, 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, 1-6. https://doi.org/10.1109/ICBDSC.2016.7460386

Asha Paul, M., & Jansi Rani, P. A., Sheela, E.D. (2021). Coral Reef Classification using Improved WLD Feature Extraction with Convolution Neural Network Classification. Recent Advances in Computer Science and Communications, 14(8). https://doi.org/10.2174/2666255813999200511101830

Asha Paul, M., & Jansi Rani, P. A. (2021). Statistical Modeling Based Directional Pattern Design (SMDPD) Feature Extraction for Coral Reef Classification. Environmental Monitoring and Assessment, 193, 583. https://doi.org/10.1007/s10661-021-09314-5

Asha Paul, M., Jansi Rani, P. A., & Liba Manopriya, L. (2020). Gradient Based Aura Feature Extraction for Coral Reef Classification. Wireless Personal Communications, 114(1), 149-166. https://doi.org/10.1007/s11277-020-07355-6

Banđur, D., Jakšić, B., Banđur, M., & Jović, S. (2019). An Analysis of Energy Efficiency in Wireless Sensor Networks (WSNs) Applied in Smart Agriculture. Comput. Electron. Agric, 156, 500-507. https://doi.org/10.1016/j.compag.2018.12.016

Bhoi, A., Nayak, R.P., Bhoi, S.K., Sethi, S., Panda, S.K., Sahoo, K.S., & Nayyar, A. (2021). IoT-IIRS: Internet of Things Based Intelligent-Irrigation Recommendation System Using Machine Learning Approach for Efficient Water Usage. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.578

Castañeda-Miranda, A., & Castaño-Meneses, V.M. (2020). Internet of Things for Smart Farming and Frost Intelligent Control in Greenhouses. Computers and Electronics in Agriculture, 176. https://doi.org/10.1016/j.compag.2020.105614

Chen, Q., & Chen, T.Y. (1993). Estimation of River Basin Evapotranspi- Ration Over Complex Terrain Using NOAA AVHRR Data. Acta Geogr. Sin. 48(1), 61-69. https://doi.org/10.11821/xb199301008

Clean Water Crisis Facts and Information-National Geographic (2022). Accessed: Aug. 16, 2022.[Online].

Cruz, M.A.A., Rodrigues, J.J.P.C., Al-Muhtadi, J., Korotaev, V., & Albuquerque, V.H.C. (2018). A Reference Model for Internet of Things Middleware. 1 1. IEEE Internet ThingsJ. 5. https://doi.org/10.1109/JIOT.2018.2796561

Difallah, W., Benahmed, K., Draoui, B., & Bounaama, F. (2017). Linear Optimization Model for Efficient Use of Irrigation Water. Int. J. Agron. https://doi.org/10.1155/2017/5353648

Dutta, R., Morshed, A., Aryal, J., D'Este, C., & Das, A. (2014). Development of an Intelligent Environmental Knowledge System for Sustainable Agricultural Decision Support. Environ. Model. Softw., 52, 264-272. https://doi.org/10.1016/j.envsoft.2013.10.004

Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y., & Srinivasan, K. (2018). Srinivasan Forecasting Yield by Integrating Agrarian Factors and Machine Learning Models: A Survey Comput. Electron. Agric., 155, 257-282. https://doi.org/10.1016/j.compag.2018.10.024

Goap, A., Sharma, D., Shukla, A. K, & Krishna, C. R. (2018). An IoT Based Smart Irrigation Management System using Machine Learning and Open Source Technologies. Computers and Electronics in Agriculture, 155, 41-49. https://doi.org/10.1016/j.compag.2018.09.040

Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., & Ravid, G. (2017). Applying Machine Learning on Sensor Data for Irrigation Recommendations: Revealing Theagronomist's Tacit Knowledge. Precis. Agric. 19, 421-444. https://doi.org/10.1007/s11119-017-9527-4

Gu, Z., Qi, Z., Burghate, R., Yuan, S., Jiao, X., & Xu, J. (2020). Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain.Eng, 146. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Futur. Gener. Comput. Syst. 29, 1645-1660. https://doi.org/10.1016/j.future.2013.01.010

Gutierrez, J., Villa-medina, J.F., Nieto-Garibay, A., & Porta-gandara, M. A. (2014). Automated Irrigationsystem Using a Wireless Sensor Network and GPRS module. IEEE Trans. Instrum. Meas. 63, 166-176. https://doi.org/10.1109/TIM.2013.2276487

Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1, 96-99. https://doi.org/10.13031/2013.26773

Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., & Bradbury, S. (2013). Soil Water Status and Watertable Depth Modelling using Electromagnetic Surveys for Precision Irrigation Scheduling. Geoderma, 199, 22-29. https://doi.org/10.1016/j.geoderma.2012.07.018

Jesi, V. E., Kumar, A., Hosen, B., & David D, S. (2022). IoT Enabled Smart Irrigation and Cultivation Recommendation System for Precision Agriculture. ECS Transactions 107, 1. https://doi.org/10.1149/10701.5953ecst

Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A Comprehensive Review on Automation in Agriculture Using Artificial Intelligence, Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2019.05.004

Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., & Chau, K.-W. (2019). Implementation of Evolutionary Computing Models for Reference Evapotranspiration Modeling: Short Review, Assessment and Possible Future Research Directions. Eng. Appl. Comput. Fluid Mech, 13, 811-823. https://doi.org/10.1080/19942060.2019.1645045

Khattab, A., Abdelgawad, A., & Yelmarthi, K. (2016). Design and Implementation of a Cloud-Based Iot Scheme for Precision Agriculture. 28th International Conference on Microelectronics (ICM), IEEE, Giza, Egypt, 201-204.

King, B. A., & Shellie, K. C. (2016). Evaluation of Neural Network Modelingto Predict Non-Water-Stressed Leaf Temperature in Wine Grape for Calculation of Crop Water Stress Index, Agricult. Water Manage., 167, 38-52. https://doi.org/10.1016/j.agwat.2015.12.009

Kumar, G.R., Gopal, T.V., Sridhar, V., & Nagendra, G. (2018). Smart Irrigation System. International Journal of Pure and Applied Mathematics, 119(15), 1155- 1168.

Liu, Y., Ren, Z.-h, Li, D.-M, Tian, X.-K, & Lu, Z.-N. (2006). The Research of Precision Irrigation Decision Support System Based on Genetic Algorithm. International Conference on Machine Learning and Cybernetics. https://doi.org/10.1109/ICMLC.2006.258403

Lukas, Tanumihardja, W.A., & Gunawan, E. (2015). On the Application of IoT: Monitoring of Troughs Water Level Using WSN. In: Conference on Wireless Sensors (ICS). IEEE, 58-62. https://doi.org/10.1109/ICWISE.2015.7380354

Morillo, J. G., Martín, M., Camacho, E., Díaz, J. A. R., & Montesinos, P. (2015). Toward Precision Irrigation for Intensive Strawberry Cultivation, Agricult. Water Manage, 151, 43-51. https://doi.org/10.1016/j.agwat.2014.09.021

Mulenga, R., Kalezhi, J., Musonda, S. K., & Silavwe, S. (2018). Applying Internet of Things in Monitoring and Control of an Irrigation System for Sustainable Agriculture for Small-Scale Farmers in Rural Communities, inProc. IEEE PES/IAS Power Africa, 841-845. https://doi.org/10.1109/PowerAfrica.2018.8521025

Moller, A., Mulder, V., Heuvelink, G., Jacobsen, N., & Greve, M. (2021). Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy, 11, 703. https://doi.org/10.3390/agronomy11040703

Parr, J. F., Reganold, J. P., & Papendick, R. I. (1990). Sustainable Agriculture, Sci. Amer., 262(6), 112-121. https://doi.org/10.1038/scientificamerican0690-112

Pavithra, D.S. (2014). GSM Based Automatic Irrigation Control System for Efficient Use of Resources and Crop Planning by using an Android Mobile. IOSR Journal of Mechanical and Civil Engineering, 1(4), 49-55. http://dx.doi.org/10.9790/1684-11414955

Phillips-Wren, G., & Ichalkaranje, N. (2008). Intelligent Decision Making: An AI-Based Approach; Springer Science & Business Media: Berlin, Germany, 97. https://doi.org/10.1007/978-3-540-76829-6

Pour, O.M.R., Piri, J., & Kisi, O. (2018). Comparison of SVM, ANFIS and GEP in Modeling Monthly Potential Evapotranspiration in an Arid Region (Case Study: Sistan and Baluchestan Province, Iran). Water Supply, 19, 392-403. https://doi.org/10.2166/ws.2018.084

Roopaei, M., Rad, P., Choo, K.R., & Choo, R. (2017). Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Comput, 4, 10-15. https://doi.org/10.1109/MCC.2017.5

Sami, M., Khan, S.Q., Khurram, M., Farooq, M.U., Anjum, R., Aziz, S., Qureshi, R., & Sadak, F. (2022). A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy, 12, 212. https://doi.org/10.3390/agronomy12010212

Smith, D., & Peng, W. (2009). Machine Learning Approaches for Soil Classification in a Multi-Agent Deficitirrigation Control System. IEEE International Conference on Industrial Technology-- (ICIT), Churchill, Victoria, Australia. https://doi.org/10.1109/ICIT.2009.4939641

Sun, Y., Song, H., Jara, A. J., & Bie, R. (2016). Internet of Things and Big Data Analytics for Smart and Connected Communities, IEEE Access, 4, 766-773. https://doi.org/10.1109/ACCESS.2016.2529723

Torres-Sanchez, R., Navarro-Hellin, H., Guillamon-Frutos, A., San-Segundo, R., Ruiz-Abellón, M.C., & Domingo-Miguel, R. (2020). A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques. Water, 12, 548. https://doi.org/10.3390/w12020548

Tripathy, A.K., Adinarayana, J., Vijayalakshmi, K., Merchant, S.N., Desai, U.B., Ninomiya, S., & Kimura, T., (2014). Knowledge Discovery and Leaf Spot Dynamics of Groundnut Crop Through Wireless Sensor Network and Data Mining Techniques. Comput. Electron. Agric. 107, 104-114. https://doi.org/10.1016/j.compag.2014.05.009

Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture. IEEE Sens. J. 17, 4299-4309. https://doi.org/10.1109/JSEN.2017.2705043

Vij, A., Singh, V., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and Machine Learning Approaches for Automation of Farm Irrigation System. Procedia Computer Science, 167, 1250-1257. https://doi.org/10.1016/j.procs.2020.03.440

Yamaç, S.S., & Todorovic, M. (2020). Estimation of Daily Potato Crop Evapotranspiration using Three Different Machine Learning Algorithms and Four Scenarios of Available Meteorological Data. Agric. Water Manag, 228. https://doi.org/10.1016/j.agwat.2019.105875

Yu, S., & Lu, H. (2018). An Integrated Model of Water Resources Optimization Allocation Based on Projection Pursuit Model-Grey Wolf Optimization Method in a Transboundary River Basin. J. Hydrol., 559, 156-165. https://doi.org/10.1016/j.jhydrol.2018.02.033

Zamora-Izquierdo, M.A., Santa, J., Martínez, J.A., Martínez, V., & Skarmeta, A.F. (2019). Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng., 177, 4-17. https://doi.org/10.1016/j.biosystemseng.2018.10.014

Zhang, H., Xiong, Y., Huang, G., Xu, X., & Huang, Q. (2017). Effects of Water Stress on Processing Tomatoes Yield, Quality and Water Use Efficiency with Plastic Mulched Drip Irrigation in Sandy Soil of the Hetao Irrigation District. Agric. Water Manag, 179, 205-214. https://doi.org/10.1016/j.agwat.2016.07.022

Zhang, N., Wang, M., & Wang, N. (2002). Precision Agriculture-A World Wide Overview," Comput. Electron. Agricult., 36(2-3), 113-132. https://doi.org/10.1016/S0168-1699(02)00096-0

Downloads

Published

2024-07-05

How to Cite

Kumar, K., & Yadav, R. K. (2024). MAXIMIZING AGRICULTURAL WATER EFFICIENCY: INTEGRATING IOT AND SUPERVISED LEARNING FOR SMART IRRIGATION OPTIMIZATION. International Journal of Research -GRANTHAALAYAH, 12(6), 64–74. https://doi.org/10.29121/granthaalayah.v12.i6.2024.5663