MAXIMIZING AGRICULTURAL WATER EFFICIENCY: INTEGRATING IOT AND SUPERVISED LEARNING FOR SMART IRRIGATION OPTIMIZATION
DOI:
https://doi.org/10.29121/granthaalayah.v12.i6.2024.5663Keywords:
Irrigation, IoT, Machine Learning, PrecipitationAbstract [English]
Optimum utilization of clean water around the globe is essential in order to avoid scarcity. In agriculture, due to the lack of intelligent irrigation systems, consumes more amount of fresh water. Smart irrigation using IoT technologies can solve the problem by achieving effective utilization of water. By examining ground parameters such soil temperature, air moisture, soil moisture, humidity, and weather data (precipitation) from the website, this research project forecasts the irrigation schedule. When designing intelligent irrigation, soil moisture is a key consideration. It is suggested that a hybrid machine learning algorithm be used to estimate the soil moisture for the next days using field, environmental, and weather data in order to accomplish smart irrigation. The field data are gathered by sensors and are transmitted via wifi to the server and the web-based interface is developed to visualize the current field data, weather data, and schedule of the next irrigation. The system is fully autonomous which starts and stops the irrigation based on the result of the algorithm. This work depicts the architecture of the system and describes the information processing of the results for a month. The accuracy of the propsed algorithm is good and has a minimum error rate of predicted soil moisture.
Downloads
References
Abdullah, A., Enazi, S. A., & Damaj, I. (2016). AgriSys: A Smart and Ubiquitous Controlled-Environment Agriculture System, 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, 1-6. https://doi.org/10.1109/ICBDSC.2016.7460386
Asha Paul, M., & Jansi Rani, P. A., Sheela, E.D. (2021). Coral Reef Classification using Improved WLD Feature Extraction with Convolution Neural Network Classification. Recent Advances in Computer Science and Communications, 14(8). https://doi.org/10.2174/2666255813999200511101830
Asha Paul, M., & Jansi Rani, P. A. (2021). Statistical Modeling Based Directional Pattern Design (SMDPD) Feature Extraction for Coral Reef Classification. Environmental Monitoring and Assessment, 193, 583. https://doi.org/10.1007/s10661-021-09314-5
Asha Paul, M., Jansi Rani, P. A., & Liba Manopriya, L. (2020). Gradient Based Aura Feature Extraction for Coral Reef Classification. Wireless Personal Communications, 114(1), 149-166. https://doi.org/10.1007/s11277-020-07355-6
Banđur, D., Jakšić, B., Banđur, M., & Jović, S. (2019). An Analysis of Energy Efficiency in Wireless Sensor Networks (WSNs) Applied in Smart Agriculture. Comput. Electron. Agric, 156, 500-507. https://doi.org/10.1016/j.compag.2018.12.016
Bhoi, A., Nayak, R.P., Bhoi, S.K., Sethi, S., Panda, S.K., Sahoo, K.S., & Nayyar, A. (2021). IoT-IIRS: Internet of Things Based Intelligent-Irrigation Recommendation System Using Machine Learning Approach for Efficient Water Usage. PeerJ Computer Science, 7. https://doi.org/10.7717/peerj-cs.578
Castañeda-Miranda, A., & Castaño-Meneses, V.M. (2020). Internet of Things for Smart Farming and Frost Intelligent Control in Greenhouses. Computers and Electronics in Agriculture, 176. https://doi.org/10.1016/j.compag.2020.105614
Chen, Q., & Chen, T.Y. (1993). Estimation of River Basin Evapotranspi- Ration Over Complex Terrain Using NOAA AVHRR Data. Acta Geogr. Sin. 48(1), 61-69. https://doi.org/10.11821/xb199301008
Clean Water Crisis Facts and Information-National Geographic (2022). Accessed: Aug. 16, 2022.[Online].
Cruz, M.A.A., Rodrigues, J.J.P.C., Al-Muhtadi, J., Korotaev, V., & Albuquerque, V.H.C. (2018). A Reference Model for Internet of Things Middleware. 1 1. IEEE Internet ThingsJ. 5. https://doi.org/10.1109/JIOT.2018.2796561
Difallah, W., Benahmed, K., Draoui, B., & Bounaama, F. (2017). Linear Optimization Model for Efficient Use of Irrigation Water. Int. J. Agron. https://doi.org/10.1155/2017/5353648
Dutta, R., Morshed, A., Aryal, J., D'Este, C., & Das, A. (2014). Development of an Intelligent Environmental Knowledge System for Sustainable Agricultural Decision Support. Environ. Model. Softw., 52, 264-272. https://doi.org/10.1016/j.envsoft.2013.10.004
Elavarasan, D., Vincent, D.R., Sharma, V., Zomaya, A.Y., & Srinivasan, K. (2018). Srinivasan Forecasting Yield by Integrating Agrarian Factors and Machine Learning Models: A Survey Comput. Electron. Agric., 155, 257-282. https://doi.org/10.1016/j.compag.2018.10.024
Goap, A., Sharma, D., Shukla, A. K, & Krishna, C. R. (2018). An IoT Based Smart Irrigation Management System using Machine Learning and Open Source Technologies. Computers and Electronics in Agriculture, 155, 41-49. https://doi.org/10.1016/j.compag.2018.09.040
Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., & Ravid, G. (2017). Applying Machine Learning on Sensor Data for Irrigation Recommendations: Revealing Theagronomist's Tacit Knowledge. Precis. Agric. 19, 421-444. https://doi.org/10.1007/s11119-017-9527-4
Gu, Z., Qi, Z., Burghate, R., Yuan, S., Jiao, X., & Xu, J. (2020). Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain.Eng, 146. https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A Vision, Architectural Elements, and Future Directions. Futur. Gener. Comput. Syst. 29, 1645-1660. https://doi.org/10.1016/j.future.2013.01.010
Gutierrez, J., Villa-medina, J.F., Nieto-Garibay, A., & Porta-gandara, M. A. (2014). Automated Irrigationsystem Using a Wireless Sensor Network and GPRS module. IEEE Trans. Instrum. Meas. 63, 166-176. https://doi.org/10.1109/TIM.2013.2276487
Hargreaves, G. H., & Samani, Z. A. (1985). Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1, 96-99. https://doi.org/10.13031/2013.26773
Hedley, C. B., Roudier, P., Yule, I. J., Ekanayake, J., & Bradbury, S. (2013). Soil Water Status and Watertable Depth Modelling using Electromagnetic Surveys for Precision Irrigation Scheduling. Geoderma, 199, 22-29. https://doi.org/10.1016/j.geoderma.2012.07.018
Jesi, V. E., Kumar, A., Hosen, B., & David D, S. (2022). IoT Enabled Smart Irrigation and Cultivation Recommendation System for Precision Agriculture. ECS Transactions 107, 1. https://doi.org/10.1149/10701.5953ecst
Jha, K., Doshi, A., Patel, P., & Shah, M. (2019). A Comprehensive Review on Automation in Agriculture Using Artificial Intelligence, Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2019.05.004
Jing, W., Yaseen, Z.M., Shahid, S., Saggi, M.K., Tao, H., Kisi, O., Salih, S.Q., Al-Ansari, N., & Chau, K.-W. (2019). Implementation of Evolutionary Computing Models for Reference Evapotranspiration Modeling: Short Review, Assessment and Possible Future Research Directions. Eng. Appl. Comput. Fluid Mech, 13, 811-823. https://doi.org/10.1080/19942060.2019.1645045
Khattab, A., Abdelgawad, A., & Yelmarthi, K. (2016). Design and Implementation of a Cloud-Based Iot Scheme for Precision Agriculture. 28th International Conference on Microelectronics (ICM), IEEE, Giza, Egypt, 201-204.
King, B. A., & Shellie, K. C. (2016). Evaluation of Neural Network Modelingto Predict Non-Water-Stressed Leaf Temperature in Wine Grape for Calculation of Crop Water Stress Index, Agricult. Water Manage., 167, 38-52. https://doi.org/10.1016/j.agwat.2015.12.009
Kumar, G.R., Gopal, T.V., Sridhar, V., & Nagendra, G. (2018). Smart Irrigation System. International Journal of Pure and Applied Mathematics, 119(15), 1155- 1168.
Liu, Y., Ren, Z.-h, Li, D.-M, Tian, X.-K, & Lu, Z.-N. (2006). The Research of Precision Irrigation Decision Support System Based on Genetic Algorithm. International Conference on Machine Learning and Cybernetics. https://doi.org/10.1109/ICMLC.2006.258403
Lukas, Tanumihardja, W.A., & Gunawan, E. (2015). On the Application of IoT: Monitoring of Troughs Water Level Using WSN. In: Conference on Wireless Sensors (ICS). IEEE, 58-62. https://doi.org/10.1109/ICWISE.2015.7380354
Morillo, J. G., Martín, M., Camacho, E., Díaz, J. A. R., & Montesinos, P. (2015). Toward Precision Irrigation for Intensive Strawberry Cultivation, Agricult. Water Manage, 151, 43-51. https://doi.org/10.1016/j.agwat.2014.09.021
Mulenga, R., Kalezhi, J., Musonda, S. K., & Silavwe, S. (2018). Applying Internet of Things in Monitoring and Control of an Irrigation System for Sustainable Agriculture for Small-Scale Farmers in Rural Communities, inProc. IEEE PES/IAS Power Africa, 841-845. https://doi.org/10.1109/PowerAfrica.2018.8521025
Moller, A., Mulder, V., Heuvelink, G., Jacobsen, N., & Greve, M. (2021). Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy, 11, 703. https://doi.org/10.3390/agronomy11040703
Parr, J. F., Reganold, J. P., & Papendick, R. I. (1990). Sustainable Agriculture, Sci. Amer., 262(6), 112-121. https://doi.org/10.1038/scientificamerican0690-112
Pavithra, D.S. (2014). GSM Based Automatic Irrigation Control System for Efficient Use of Resources and Crop Planning by using an Android Mobile. IOSR Journal of Mechanical and Civil Engineering, 1(4), 49-55. http://dx.doi.org/10.9790/1684-11414955
Phillips-Wren, G., & Ichalkaranje, N. (2008). Intelligent Decision Making: An AI-Based Approach; Springer Science & Business Media: Berlin, Germany, 97. https://doi.org/10.1007/978-3-540-76829-6
Pour, O.M.R., Piri, J., & Kisi, O. (2018). Comparison of SVM, ANFIS and GEP in Modeling Monthly Potential Evapotranspiration in an Arid Region (Case Study: Sistan and Baluchestan Province, Iran). Water Supply, 19, 392-403. https://doi.org/10.2166/ws.2018.084
Roopaei, M., Rad, P., Choo, K.R., & Choo, R. (2017). Cloud of Things in Smart Agriculture: Intelligent Irrigation Monitoring by Thermal Imaging. IEEE Cloud Comput, 4, 10-15. https://doi.org/10.1109/MCC.2017.5
Sami, M., Khan, S.Q., Khurram, M., Farooq, M.U., Anjum, R., Aziz, S., Qureshi, R., & Sadak, F. (2022). A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy, 12, 212. https://doi.org/10.3390/agronomy12010212
Smith, D., & Peng, W. (2009). Machine Learning Approaches for Soil Classification in a Multi-Agent Deficitirrigation Control System. IEEE International Conference on Industrial Technology-- (ICIT), Churchill, Victoria, Australia. https://doi.org/10.1109/ICIT.2009.4939641
Sun, Y., Song, H., Jara, A. J., & Bie, R. (2016). Internet of Things and Big Data Analytics for Smart and Connected Communities, IEEE Access, 4, 766-773. https://doi.org/10.1109/ACCESS.2016.2529723
Torres-Sanchez, R., Navarro-Hellin, H., Guillamon-Frutos, A., San-Segundo, R., Ruiz-Abellón, M.C., & Domingo-Miguel, R. (2020). A Decision Support System for Irrigation Management: Analysis and Implementation of Different Learning Techniques. Water, 12, 548. https://doi.org/10.3390/w12020548
Tripathy, A.K., Adinarayana, J., Vijayalakshmi, K., Merchant, S.N., Desai, U.B., Ninomiya, S., & Kimura, T., (2014). Knowledge Discovery and Leaf Spot Dynamics of Groundnut Crop Through Wireless Sensor Network and Data Mining Techniques. Comput. Electron. Agric. 107, 104-114. https://doi.org/10.1016/j.compag.2014.05.009
Viani, F., Bertolli, M., Salucci, M., & Polo, A. (2017). Low-Cost Wireless Monitoring and Decision Support for Water Saving in Agriculture. IEEE Sens. J. 17, 4299-4309. https://doi.org/10.1109/JSEN.2017.2705043
Vij, A., Singh, V., Jain, A., Bajaj, S., Bassi, A., & Sharma, A. (2020). IoT and Machine Learning Approaches for Automation of Farm Irrigation System. Procedia Computer Science, 167, 1250-1257. https://doi.org/10.1016/j.procs.2020.03.440
Yamaç, S.S., & Todorovic, M. (2020). Estimation of Daily Potato Crop Evapotranspiration using Three Different Machine Learning Algorithms and Four Scenarios of Available Meteorological Data. Agric. Water Manag, 228. https://doi.org/10.1016/j.agwat.2019.105875
Yu, S., & Lu, H. (2018). An Integrated Model of Water Resources Optimization Allocation Based on Projection Pursuit Model-Grey Wolf Optimization Method in a Transboundary River Basin. J. Hydrol., 559, 156-165. https://doi.org/10.1016/j.jhydrol.2018.02.033
Zamora-Izquierdo, M.A., Santa, J., Martínez, J.A., Martínez, V., & Skarmeta, A.F. (2019). Smart Farming IoT Platform Based on Edge and Cloud Computing. Biosyst. Eng., 177, 4-17. https://doi.org/10.1016/j.biosystemseng.2018.10.014
Zhang, H., Xiong, Y., Huang, G., Xu, X., & Huang, Q. (2017). Effects of Water Stress on Processing Tomatoes Yield, Quality and Water Use Efficiency with Plastic Mulched Drip Irrigation in Sandy Soil of the Hetao Irrigation District. Agric. Water Manag, 179, 205-214. https://doi.org/10.1016/j.agwat.2016.07.022
Zhang, N., Wang, M., & Wang, N. (2002). Precision Agriculture-A World Wide Overview," Comput. Electron. Agricult., 36(2-3), 113-132. https://doi.org/10.1016/S0168-1699(02)00096-0
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Krishan Kumar, Dr. Rakesh K Yadav
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.