OPTIMAL ENERGY MANAGEMENT IN MICROGRIDS CONSIDERING SUPPLY DEMAND RATE AND BATTERY DISCHARGE DEPTH

Authors

  • Musa Terkes Department of Electrical Engineering, Yildiz Technical University, İstanbul, Türkiye
  • Alpaslan Demirci Department of Electrical Engineering, Yildiz Technical University, İstanbul, Türkiye

DOI:

https://doi.org/10.29121/granthaalayah.v11.i10.2023.5336

Keywords:

Battery Energy Storage, Depth of Discharge, Energy Management, Microgrid, Optimization

Abstract [English]

Integrating solar energy with battery energy storage systems (BESS) is critical in sustainable development plans and carbon neutrality goals. Can the energy exchange between supply and demand offer hope via effective management of BESS operations? How will the depth of discharge in microgrids affect individual BESS prosumers? Motivated by such questions, this study determines the minimum energy costs and optimal energy management considering the BESS discharge depth for industrial prosumers with different PV power production to electricity demand ratios. In addition, the impact of Epv/Eload and depth of discharge on individual PV-BESS microgrid prosumers is evaluated annually from a technical, economic, and environmental perspective. Moreover, considering the negative impact of the self-consumption rate (SCR) on the low voltage distribution network (overvoltage, power loss, etc.), unfavorable depth of discharge thresholds and Epv /Eload are determined. The optimization framework is built in Python Gurobi, and Mixed Integer Linear Programming solves the complex problem. The results show that a higher Epv /Eload can reduce the cost of energy (COE) by up to 84.1% and increase the renewable fraction (RF) and electricity sales revenues by up to 61% and up to 570.25 $/yr. It also emphasizes that for Prosumer 5, with the highest Epv /Eload (176.5%), each depth of discharge is not feasible due to SCR. In contrast, a higher depth of discharge can increase CO2 reduction by up to 4.45 tons/yr and thus provide additional revenues of up to 197.41 $/yr. Evaluating BESS operations in microgrid energy management will help many stakeholders determine reliable investments and help in the planned transition to clean energy.

Downloads

Download data is not yet available.

References

Ahmed, E. E. E., & Demirci, A. (2022). Assessment of Overvoltage and Power Losses in Low Voltage Distribution Networks with High Photovoltaics Penetration Based on Prosumers’ Self-Consumption. 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Proceedings, 1, 1–4. https://doi.org/10.1109/HORA55278.2022.9800001. DOI: https://doi.org/10.1109/HORA55278.2022.9800001

Al Essa, M. J. M. (2020). Power Management of Grid-Integrated Energy Storage Batteries with Intermittent Renewables. Journal of Energy Storage, 31(August), 101762. https://doi.org/10.1016/j.est.2020.101762. DOI: https://doi.org/10.1016/j.est.2020.101762

Alramlawi, M., & Li, P. (2020). Design Optimization of a Residential PV-Battery Microgrid with a Detailed Battery Lifetime Estimation Model. IEEE Transactions on Industry Applications, 56(2), 2020–2030. https://doi.org/10.1109/TIA.2020.2965894. DOI: https://doi.org/10.1109/TIA.2020.2965894

Alsaidan, I., Khodaei, A., & Gao, W. (2016). Determination of Optimal Size and Depth of Discharge for Battery Energy Storage in Standalone Microgrids. 48th North American Power Symposium (NAPS), Proceedings, 1–6. https://doi.org/10.1109/NAPS.2016.7747845. DOI: https://doi.org/10.1109/NAPS.2016.7747845

Amini, M., Khorsandi, A., Vahidi, B., Hosseinian, S. H., & Malakmahmoudi, A. (2021). Optimal Sizing of Battery Energy Storage in a Microgrid Considering Capacity Degradation and Replacement Year. Electric Power Systems Research, 195(February), 107170. https://doi.org/10.1016/j.epsr.2021.107170. DOI: https://doi.org/10.1016/j.epsr.2021.107170

Bordin, C., Anuta, H. O., Crossland, A., Gutierrez, I. L., Dent, C. J., & Vigo, D. (2017). A Linear Programming Approach for Battery Degradation Analysis and Optimization in Offgrid Power Systems with Solar Energy Integration. Renewable Energy, 101, 417–430. https://doi.org/10.1016/j.renene.2016.08.066. DOI: https://doi.org/10.1016/j.renene.2016.08.066

De La Torre, S., González-González, J. M., Aguado, J. A., & Martín, S. (2019). Optimal Battery Sizing Considering Degradation for Renewable Energy Integration. IET Renewable Power Generation, 13(4), 572–577. https://doi.org/10.1049/iet-rpg.2018.5489. DOI: https://doi.org/10.1049/iet-rpg.2018.5489

Demirci, A., Akar, O., & Ozturk, Z. (2022). Technical-Environmental-Economic Evaluation of Biomass-Based Hybrid Power System with Energy Storage for Rural Electrification. Renewable Energy, 195, 1202–1217. https://doi.org/10.1016/j.renene.2022.06.097. DOI: https://doi.org/10.1016/j.renene.2022.06.097

Demirci, A., Öztürk, Z., & Tercan, S. M. (2023). Decision-Making Between Hybrid Renewable Energy Configurations and Grid Extension in Rural Areas for Different Climate Zones. Energy, 262(August 2022), 125402. https://doi.org/10.1016/j.energy.2022.125402. DOI: https://doi.org/10.1016/j.energy.2022.125402

Climate Transparency Report (n.d.): Comparing G20 Climate Action.

Dulout, J., Jammes, B., Alonso, C., Anvari-Moghaddam, A., Luna, A., & Guerrero, J. M. (2017). Optimal Sizing of a Lithium Battery Energy Storage System for Grid-Connected Photovoltaic Systems. 2nd International Conference on Direct Current Microgrids (ICDCM), 1, 582–587. https://doi.org/10.1109/ICDCM.2017.8001106. DOI: https://doi.org/10.1109/ICDCM.2017.8001106

Exist Transparency Platform (2023). Market Clearing Price 2023.

Fallahifar, R., & Kalantar, M. (2023). Optimal Planning of Lithium ion Battery Energy Storage for Microgrid Applications: Considering Capacity Degradation. Journal of Energy Storage, 57(December 2022), 106103. https://doi.org/10.1016/j.est.2022.106103. DOI: https://doi.org/10.1016/j.est.2022.106103

Gomez-Gonzalez, M., Hernandez, J. C., Vera, D., & Jurado, F. (2020). Optimal Sizing and Power Schedule in PV Household-Prosumers for Improving PV Self-Consumption and Providing Frequency Containment Reserve. Energy, 191, 116554. https://doi.org/10.1016/j.energy.2019.116554. DOI: https://doi.org/10.1016/j.energy.2019.116554

Head Office (2023). Inflation and Interest Report in Turkey 2023.

Hlal, M. I., Ramachandaramurthy, V. K., Sarhan, A., Pouryekta, A., & Subramaniam, U. (2019). Optimum Battery Depth of Discharge for Off-Grid Solar PV/Battery System. Journal of Energy Storage, 26(June), 100999. https://doi.org/10.1016/j.est.2019.100999. DOI: https://doi.org/10.1016/j.est.2019.100999

International Energy Agengy. (2023). World Energy Investment 2023.

Jacobus, H., Lin, B., Jimmy, D. H., Ansumana, R., Malanoski, A. P., & Stenger, D. (2011). Evaluating the Impact of Adding Energy Storage on the Performance of a Hybrid Power System. Energy Conversion and Management, 52(7), 2604–2610. https://doi.org/10.1016/j.enconman.2011.01.015. DOI: https://doi.org/10.1016/j.enconman.2011.01.015

Liu, J., Wang, M., Peng, J., Chen, X., Cao, S., & Yang, H. (2020). Techno-Economic Design Optimization of Hybrid Renewable Energy Applications for High-Rise Residential Buildings. Energy Conversion and Management, 213(March), 112868. https://doi.org/10.1016/j.enconman.2020.112868. DOI: https://doi.org/10.1016/j.enconman.2020.112868

Mostafa, M. H., Aleem, S. H. E. A., Ali, S. G., Abdelaziz, A. Y., Ribeiro, P. F., & Ali, Z. M. (2020). Robust Energy Management and Economic Analysis of Microgrids Considering Different Battery Characteristics. IEEE Access, 8, 54751–54775. https://doi.org/10.1109/ACCESS.2020.2981697. DOI: https://doi.org/10.1109/ACCESS.2020.2981697

Ozturk, Z., & Demirci, A. (2023). Optimization of Renewable Energy Hybrid Power Systems Under Different Penetration and Grid Tariffs. Journal of Polytechnic. https://doi.org/10.2339/politeknik.1246418. DOI: https://doi.org/10.2339/politeknik.1246418

Ozturk, Z., Demirci, A., Tosun, S., & Ozturk, A. (2021). Technic and Economic Effects of Changes in the Location of Industrial Facilities in Industrializing Regions on Power Systems. 13th International Conference on Electrical and Electronics Engineering (ELECO), 11–17. https://doi.org/10.23919/ELECO54474.2021.9677827. DOI: https://doi.org/10.23919/ELECO54474.2021.9677827

Park, S. J., Song, Y. W., Kang, B. S., Kim, W. J., Choi, Y. J., Kim, C., & Hong, Y. S. (2023). Depth of Discharge Characteristics and Control Strategy to Optimize Electric Vehicle Battery Life. Journal of Energy Storage, 59(December 2022), 106477. https://doi.org/10.1016/j.est.2022.106477. DOI: https://doi.org/10.1016/j.est.2022.106477

Python (n.d.). Gurobi Optimization Module (10.0).

Qi, X., Wang, J., Królczyk, G., Gardoni, P., & Li, Z. (2022). Sustainability analysis of a hybrid renewable power system with battery storage for islands application. Journal of Energy Storage, 50(March). https://doi.org/10.1016/j.est.2022.104682. DOI: https://doi.org/10.1016/j.est.2022.104682

Qiu, Z., Zhang, W., Lu, S., Li, C., Wang, J., Meng, K., & Dong, Z. (2022). Charging-rate-based Battery Energy Storage System in Wind Farm and Battery Storage Cooperation Bidding Problem. CSEE Journal of Power and Energy Systems, 8(3), 659–668. https://doi.org/10.17775/CSEEJPES.2021.00230. DOI: https://doi.org/10.17775/CSEEJPES.2021.00230

Rayit, N. S., Chowdhury, J. I., & Balta-Ozkan, N. (2021). Techno-Economic Optimisation of Battery Storage for Grid-Level Energy Services Using Curtailed Energy from Wind. Journal of Energy Storage, 39(April), 102641. https://doi.org/10.1016/j.est.2021.102641. DOI: https://doi.org/10.1016/j.est.2021.102641

Renewables. ninja (n.d.). Solar PV Databese for the Relevant Location.

Sufyan, M., Rahim, N. A., Tan, C. K., Muhammad, M. A., & Raihan, S. R. S. (2019). Optimal Sizing and Energy Scheduling of Isolated Microgrid Considering the Battery Lifetime Degradation. PLoS ONE, 14(2), 1–28. https://doi.org/10.1371/journal.pone.0211642. DOI: https://doi.org/10.1371/journal.pone.0211642

Tebibel, H., Labed, S., Khellaf, A., Ziogou, C., Papadopoulou, S., & Voutetakis, S. (2015). Impact of the Battery Depth of Discharge on the Performance of Photovoltaic Hydrogen Production Unit with Energy Management Strategy. International Conference on Renewable Energy Research and Applications (ICRERA), 1074–1078. https://doi.org/10.1109/ICRERA.2015.7418575. DOI: https://doi.org/10.1109/ICRERA.2015.7418575

Terkes, M., Demirci, A., & Gokalp, E. (2023). An Evaluation of Optimal Sized Second-Life Electric Vehicle Batteries Improving Technical, Economic, and Environmental Effects of Hybrid Power Systems. Energy Conversion and Management, 291(June), 117272. https://doi.org/10.1016/j.enconman.2023.117272. DOI: https://doi.org/10.1016/j.enconman.2023.117272

Terkes, M., Öztürk, Z., Demirci, A., & Tercan, S. M. (2023). Optimal Sizing and Feasibility Analysis of Second-Life Battery Energy Storage Systems for Community Microgrids Considering Carbon Reduction. Journal of Cleaner Production, 421(August). https://doi.org/10.1016/j.jclepro.2023.138507. DOI: https://doi.org/10.1016/j.jclepro.2023.138507

Terkes, M., Tercan, S. M., Demirci, A., & Gokalp, E. (2022). An Evaluation of Renewable Fraction Using Energy Storage for Electric Vehicle Charging Station. 4th International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), Proceedings. https://doi.org/10.1109/HORA55278.2022.9800091. DOI: https://doi.org/10.1109/HORA55278.2022.9800091

Tsioumas, E., Jabbour, N., Koseoglou, M., Papagiannis, D., & Mademlis, C. (2021). Enhanced Sizing Methodology for the Renewable Energy Sources and the Battery Storage System in a Nearly Zero Energy Building. IEEE Transactions on Power Electronics, 36(9), 10142–10156. https://doi.org/10.1109/TPEL.2021.3058395. DOI: https://doi.org/10.1109/TPEL.2021.3058395

Üçtuğ, F. G., & Azapagic, A. (2018). Environmental Impacts of Small-Scale Hybrid Energy Systems: Coupling Solar Photovoltaics and Lithium-Ion Batteries. Science of the Total Environment, 643, 1579–1589. https://doi.org/10.1016/j.scitotenv.2018.06.290. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.290

Zia, M. F., Elbouchikhi, E., & Benbouzid, M. (2019). Optimal Operational Planning of Scalable DC Microgrid with Demand Response, Islanding, and Battery Degradation Cost Considerations. Applied Energy, 237(December 2018), 695–707. https://doi.org/10.1016/j.apenergy.2019.01.040. DOI: https://doi.org/10.1016/j.apenergy.2019.01.040

Zieba Falama, R., Dawoua Kaoutoing, M., Kwefeu Mbakop, F., Dumbrava, V., Makloufi, S., Djongyang, N., Salah, C. Ben, & Doka, S. Y. (2022). A Comparative Study Based on a Techno-Environmental-Economic Analysis of Some Hybrid Grid-Connected Systems Operating Under Electricity Blackouts: A Case Study in Cameroon. Energy Conversion and Management, 251(October 2021), 114935. https://doi.org/10.1016/j.enconman.2021.114935. DOI: https://doi.org/10.1016/j.enconman.2021.114935

Downloads

Published

2023-11-09

How to Cite

Terkes, M., & Demirci, A. (2023). OPTIMAL ENERGY MANAGEMENT IN MICROGRIDS CONSIDERING SUPPLY DEMAND RATE AND BATTERY DISCHARGE DEPTH. International Journal of Research -GRANTHAALAYAH, 11(10), 64–79. https://doi.org/10.29121/granthaalayah.v11.i10.2023.5336