CELL-PENETRATING PEPTIDES NANO-CONJUGATED WITH METALLIC NANOPARTICLE FOR THE DEVELOPMENT OF THERAPEUTIC AND OR PROPHYLACTIC AGENTS AGAINST RESPIRATORY SYNCYTIAL VIRUS

Authors

  • Homa Nath Sharma Ph.D. Student, Microbiology Program, Department of Biological Sciences, Alabama State University, Montgomery, Alabama, USA

DOI:

https://doi.org/10.29121/granthaalayah.v11.i7.2023.5200

Keywords:

Respiratory Syncytial Virus, Cell-Penetrating Peptides, Metallic Nanoparticles

Abstract [English]

Respiratory Syncytial Virus (RSV) is an enveloped, pleomorphic, often filamentous, cytoplasmic virus-containing non-segmented, negative-sense, single-stranded RNA associated with viral proteins, making up a nucleocapsid core that is enclosed within a lipid envelope. RSV causes about 7 % of deaths among infants and young children globally, which is the second-most cause of mortality in that age group after malaria. Despite the immense impact mounted by RSV in public health and the economy, there are no effective prophylactic and therapeutic agents to control and treat the disease caused by RSV. Currently, four RSV vaccines and a monoclonal antibody candidate, all using the stabilized pre-fusion (F) proteins, have shown promising results in healthy subjects and are in phase III clinical trial. Results from these trials are expected to be released soon. However, more than one type of vaccine and therapeutics are required to cover all populations at risk: younger children, older adults, pregnant women, and immunocompromised people. Search for more antiviral drugs and vaccines is going on, but due to the issues of cost, toxicity, resistance, bioavailability, and overall pharmacokinetic profile associated with prospective traditional drugs, studies on antiviral peptides can offer novel avenues in the field. In recent years, cell-penetrating peptides (CPPs) with 5-30 AAs in length have shown promising drug delivery potential, but antiviral property demonstrated by some CPPs is another exciting possibility in the drug discovery arena, since finding shorter anti-viral peptides is another priority to minimize the cost. Some of the metallic nanoparticles have shown antiviral properties themselves. If both cell-penetrating property and antiviral activity can be found in the same peptide, nano-conjugating CPP with or without other antiviral peptides can improve the stability and other therapeutic indices of such peptide so that it can possibly be developed as safe and effective therapeutic and or prophylactic tools to control RSV.

Downloads

Download data is not yet available.

References

Akkarawongsa, R., Potocky, T. B., English, E. P., Gellman, S. H., & Brandt, C. R. (2008). Inhibition of Herpès Simplex Virus Type 1 Infection by Cationic Beta-Peptides. Antimicrobial Agents and Chemotherapy, 52(6), 2120-2129. https://doi.org/10.1128/AAC.01424-07. DOI: https://doi.org/10.1128/AAC.01424-07

Alghrair, Z. K., Fernig, D. G., & Ebrahimi, B. (2019). Enhanced Inhibition of Influenza Virus Infection by Peptide-Noble-Metal Nanoparticle Conjugates. Beilstein Journal of Nanotechnology, 10, 1038-1047. https://doi.org/10.3762/bjnano.10.104. DOI: https://doi.org/10.3762/bjnano.10.104

Andaloussi, S. E., Lehto, T., Mäger, I., Rosenthal-Aizman, K., Oprea, I. I., Simonson, O. E., Sork, H., Ezzat, K., Copolovici, D. M., Kurrikoff, K., Viola, J. R., Zaghloul, E. M., Sillard, R., Johansson, H. J., Said Hassane, F., Guterstam, P., Suhorutšenko, J., Moreno, P. M., Oskolkov, N., Langel, U. (2011). Design of a Peptide-Based Vector, PepFect6, for Efficient Delivery of siRNA in Cell Culture and Systemically in Vivo. Nucleic Acids Research, 39(9), 3972-3987. https://doi.org/10.1093/nar/gkq1299. DOI: https://doi.org/10.1093/nar/gkq1299

Battles, M. B., & McLellan, J. S. (2019). Respiratory Syncytial Virus Entry and How to Block it. Nature Reviews. Microbiology, 17(4), 233-245. https://doi.org/10.1038/s41579-019-0149-x. DOI: https://doi.org/10.1038/s41579-019-0149-x

Battles, M. B., Langedijk, J. P., Furmanova-Hollenstein, P., Chaiwatpongsakorn, S., Costello, H. M., Kwanten, L., Vranckx, L., Vink, P., Jaensch, S., Jonckers, T. H., Koul, A., Arnoult, E., Peeples, M. E., Roymans, D., & McLellan, J. S. (2016). Molecular Mechanism of Respiratory Syncytial Virus Fusion Inhibitors. Nature Chemical Biology, 12(2), 87-93. https://doi.org/10.1038/nchembio.1982. DOI: https://doi.org/10.1038/nchembio.1982

Bawage, S. S., Tiwari, P. M., Singh, A., Dixit, S., Pillai, S. R., Dennis, V. A., & Singh, S. R. (2016). Gold Nanorods Inhibit Respiratory Syncytial Virus by Stimulating the Innate Immune Response. Nanomedicine : Nanotechnology, Biology, and Medicine, 12(8), 2299-2310. https://doi.org/10.1016/j.nano.2016.06.006. DOI: https://doi.org/10.1016/j.nano.2016.06.006

Beauchemin, C. A. A., Kim, Y. I., Yu, Q., Ciaramella, G., & DeVincenzo, J. P. (2019). Uncovering Critical Properties of the Human Respiratory Syncytial Virus by Combining in Vitro Assays and in Silico Analyses. PLOS ONE, 14(4), e0214708. https://doi.org/10.1371/journal.pone.0214708. DOI: https://doi.org/10.1371/journal.pone.0214708

Bechara, C., & Sagan, S. (2013). Cell-Penetrating Peptides : 20 Years Later, Where do We Stand ? FEBS Letters, 587(12), 1693-1702. https://doi.org/10.1016/j.febslet.2013.04.031. DOI: https://doi.org/10.1016/j.febslet.2013.04.031

Bellet-Amalric, E., Blaudez, D., Desbat, B., Graner, F., Gauthier, F., & Renault, A. (2000). Interaction of the Third Helix of Antennapedia Homeodomain and a Phospholipid Monolayer, Studied by Ellipsometry and PM-IRRAS at the Air-Water Interface. Biochimica et Biophysica Acta, 1467(1), 131-143. https://doi.org/10.1016/s0005-2736(00)00218-2. DOI: https://doi.org/10.1016/S0005-2736(00)00218-2

Borchers, A. T., Chang, C., Gershwin, M. E., & Gershwin, L. J. (2013). Respiratory Syncytial Virus-A Comprehensive Review. Clinical Reviews in Allergy and Immunology, 45(3), 331-379. https://doi.org/10.1007/s12016-013-8368-9. DOI: https://doi.org/10.1007/s12016-013-8368-9

Brinkmann, V., Reichard, U., Goosmann, C., Fauler, B., Uhlemann, Y., Weiss, D. S., Weinrauch, Y., & Zychlinsky, A. (2004). Neutrophil Extracellular Traps Kill Bacteria. Science, 303(5663), 1532-1535. https://doi.org/10.1126/science.1092385. DOI: https://doi.org/10.1126/science.1092385

Bultmann, H., & Brandt, C. R. (2002). Peptides Containing Membrane-Transiting Motifs Inhibit Virus Entry. Journal of Biological Chemistry, 277(39), 36018-36023. https://doi.org/10.1074/jbc.M204849200. DOI: https://doi.org/10.1074/jbc.M204849200

Bultmann, H., Teuton, J., & Brandt, C. R. (2007). Addition of a C-Terminal Cysteine Improves the Anti-Herpès Simplex Virus Activity of a Peptide Containing the Human Immunodeficiency Virus Type 1 TAT Protein Transduction Domain. Antimicrobial Agents and Chemotherapy, 51(5), 1596-1607. https://doi.org/10.1128/AAC.01009-06. DOI: https://doi.org/10.1128/AAC.01009-06

Carvajal, J. J., Avellaneda, A. M., Salazar-Ardiles, C., Maya, J. E., Kalergis, A. M., & Lay, M. K. (Hosts). (2019). Host Components Contributing to Respiratory Syncytial Virus Pathogenesis. Frontiers in Immunology, 10, 2152. https://doi.org/10.3389/fimmu.2019.02152. DOI: https://doi.org/10.3389/fimmu.2019.02152

Centers for Disease Control and Prevention (US). (2020). Respiratory Syncytial Virus Infections : Trends and Surveyllence, Retrieved 12/18/2020, 12/25 [Cited 2021 12/25/2021].

Chakravarty, M., & Vora, A. (2021). Nanotechnology-Based Antiviral therapeutics. Drug Delivery and Translational Research, 11(3), 748-787. https://doi.org/10.1007/s13346-020-00818-0. DOI: https://doi.org/10.1007/s13346-020-00818-0

Chu, X., Wu, B., Fan, H., Hou, J., Hao, J., Hu, J., Wang, B., Liu, G., Li, C., & Meng, S. (2016). PTD-Fused p53 as a Potential Antiviral Agent Directly Suppresses HBV Transcription and Expression. Antiviral Research, 127, 41-49. https://doi.org/10.1016/j.antiviral.2016.01.008. DOI: https://doi.org/10.1016/j.antiviral.2016.01.008

Cochran, A. G. (2000). Antagonists of Protein-Protein Interactions. Chemistry and Biology, 7(4), R85-R94. https://doi.org/10.1016/s1074-5521(00)00106-x. DOI: https://doi.org/10.1016/S1074-5521(00)00106-X

Collins, P. L., & Graham, B. S. (2008). Viral and Host Factors in Human Respiratory Syncytial Virus Pathogenesis. Journal of Virology, 82(5), 2040-2055. https://doi.org/10.1128/JVI.01625-07. DOI: https://doi.org/10.1128/JVI.01625-07

Collins, P. L., Fearns, R., & Graham, B. S. (2013). Respiratory Syncytial Virus : Virology, Reverse Genetics, and Pathogenesis of Disease. Current topics in Microbiology and Immunology, 372, 3-38. https://doi.org/10.1007/978-3-642-38919-1_1. DOI: https://doi.org/10.1007/978-3-642-38919-1_1

Collins, P. L., Hill, M. G., Cristina, J., & Grosfeld, H. (1996). Transcription Elongation Factor of Respiratory Syncytial Virus, A Nonsegmented Negative-Strand RNA Virus. Proceedings of the National Academy of Sciences of the United States of America, 93(1), 81-85. https://doi.org/10.1073/pnas.93.1.81. DOI: https://doi.org/10.1073/pnas.93.1.81

Copolovici, D. M., Langel, K., Eriste, E., & Langel, Ü. (2014). Cell-Penetrating Peptides : Design, Synthesis, and Applications. ACS Nano, 8(3), 1972-1994. https://doi.org/10.1021/nn4057269. DOI: https://doi.org/10.1021/nn4057269

Currie, S. M., Findlay, E. G., McHugh, B. J., Mackellar, A., Man, T., Macmillan, D., Wang, H., Fitch, P. M., Schwarze, J., & Davidson, D. J. (2013). The Human Cathelicidin LL-37 has Antiviral Activity Against Respiratory Syncytial Virus. PLOS ONE, 8(8), e73659. https://doi.org/10.1371/journal.pone.0073659. DOI: https://doi.org/10.1371/journal.pone.0073659

Currie, S. M., Gwyer Findlay, E., McFarlane, A. J., Fitch, P. M., Böttcher, B., Colegrave, N., Paras, A., Jozwik, A., Chiu, C., Schwarze, J., & Davidson, D. J. (2016). Cathelicidins have Direct Antiviral Activity Against Respiratory Syncytial Virus in Vitro and Protective Function in Vivo in Mice and Humans. Journal of Immunology, 196(6), 2699-2710. https://doi.org/10.4049/jimmunol.1502478. DOI: https://doi.org/10.4049/jimmunol.1502478

De Oliveira, E. C. L., Santana, K., Josino, L., Lima E Lima, A. H., & De Souza De Sales Júnior, C. (2021). Predicting Cell-Penetrating Peptides Using Machine Learning Algorithms and Navigating in their Chemical Space. Scientific Reports, 11(1), 7628. https://doi.org/10.1038/s41598-021-87134-w. DOI: https://doi.org/10.1038/s41598-021-87134-w

Delcroix, M., & Riley, L. W. (2010). Cell-Penetrating Peptides for Antiviral Drug Development. Pharmaceuticals, 3(3), 448-470. https://doi.org/10.3390/ph3030448. DOI: https://doi.org/10.3390/ph3030448

Delshadi, R., Bahrami, A., McClements, D. J., Moore, M. D., & Williams, L. (2021). Development of Nanoparticle-Delivery Systems for Antiviral Agents : A Review. Journal of Controlled Release, 331, 30-44. https://doi.org/10.1016/j.jconrel.2021.01.017. DOI: https://doi.org/10.1016/j.jconrel.2021.01.017

Derakhshankhah, H., & Jafari, S. (2018). Cell Penetrating Peptides : A Concise Review with Emphasis on Biomedical Applications. Biomedicine and Pharmacotherapy, 108, 1090-1096. https://doi.org/10.1016/j.biopha.2018.09.097. DOI: https://doi.org/10.1016/j.biopha.2018.09.097

Derossi, D., Chassaing, G., & Prochiantz, A. (1998). Trojan Peptides : the Penetratin System for Intracellular Delivery. Trends in Cell Biology, 8(2), 84-87. https://doi.org/10.1016/S0962-8924(98)80017-2. DOI: https://doi.org/10.1016/S0962-8924(98)80017-2

Desale, K., Kuche, K., & Jain, S. (2021). Cell-Penetrating Peptides (CPPs): An Overview of Applications for Improving the Potential of Nanotherapeutics. Biomaterials Science, 9(4), 1153-1188. https://doi.org/10.1039/d0bm01755h. DOI: https://doi.org/10.1039/D0BM01755H

Didierlaurent, A., Goulding, J., Patel, S., Snelgrove, R., Low, L., Bebien, M., Lawrence, T., van Rijt, L. S., Lambrecht, B. N., Sirard, J. C., & Hussell, T. (2008). Sustained Desensitization to Bacterial toll-Like Receptor Ligands After Resolution of Respiratory Influenza Infection. Journal of Experimental Medicine, 205(2), 323-329. https://doi.org/10.1084/jem.20070891. DOI: https://doi.org/10.1084/jem.20070891

Duchardt, F., Ruttekolk, I. R., Verdurmen, W. P. R., Lortat-Jacob, H., Bürck, J., Hufnagel, H., Fischer, R., van den Heuvel, M., Löwik, D. W. P. M., Vuister, G. W., Ulrich, A., de Waard, M., & Brock, R. (2009). A Cell-Penetrating Peptide Derived from Human Lactoferrin with Conformation-Dependent Uptake Efficiency. Journal of Biological Chemistry, 284(52), 36099-36108. https://doi.org/10.1074/jbc.M109.036426. DOI: https://doi.org/10.1074/jbc.M109.036426

Dudas, R. A., & Karron, R. A. (1998). Respiratory Syncytial Virus Vaccines. Clinical Microbiology Reviews, 11(3), 430-439. https://doi.org/10.1128/CMR.11.3.430. DOI: https://doi.org/10.1128/CMR.11.3.430

Elmquist, A., Hansen, M., & Langel, U. (2006). Structure-Activity Relationship Study of the Cell-Penetrating Peptide pVEC. Biochimica et Biophysica Acta, 1758(6), 721-729. https://doi.org/10.1016/j.bbamem.2006.05.013. DOI: https://doi.org/10.1016/j.bbamem.2006.05.013

Fjell, C. D., Hiss, J. A., Hancock, R. E., & Schneider, G. (2011). Designing Antimicrobial Peptides : Form Follows Function. Nature Reviews. Drug Discovery, 11(1), 37-51. https://doi.org/10.1038/nrd3591. DOI: https://doi.org/10.1038/nrd3591

Gao, C., Mao, S., Ditzel, H. J., Farnaes, L., Wirsching, P., Lerner, R. A., & Janda, K. D. (2002). A Cell-Penetrating Peptide from a Novel pVII-pIX Phage-Displayed Random Peptide Library. Bioorganic and Medicinal Chemistry, 10(12), 4057-4065. https://doi.org/10.1016/s0968-0896(02)00340-1. DOI: https://doi.org/10.1016/S0968-0896(02)00340-1

Gautam, A., Chaudhary, K., Kumar, R., Sharma, A., Kapoor, P., Tyagi, A., Open Source Drug Discovery Consortium, & Raghava, G. P. (2013). In Silico Approaches for Designing Highly Effective Cell Penetrating Peptides. Journal of Translational Medicine, 11, 74. https://doi.org/10.1186/1479-5876-11-74. DOI: https://doi.org/10.1186/1479-5876-11-74

Glezen, W. P., Paredes, A., Allison, J. E., Taber, L. H., & Frank, A. L. (1981). Risk of Respiratory Syncytial Virus Infection for Infants from Low-Income Families in Relationship to Age, Sex, Ethnic Group, and Maternal Antibody Level. Journal of Pediatrics, 98(5), 708-715. https://doi.org/10.1016/s0022-3476(81)80829-3. DOI: https://doi.org/10.1016/S0022-3476(81)80829-3

González, P. A., Bueno, S. M., Carreño, L. J., Riedel, C. A., & Kalergis, A. M. (2012). Respiratory Syncytial Virus Infection and Immunity. Reviews in Medical Virology, 22(4), 230-244. https://doi.org/10.1002/rmv.1704. DOI: https://doi.org/10.1002/rmv.1704

Gorman, J. J., McKimm-Breschkin, J. L., Norton, R. S., & Barnham, K. J. (2001). Antiviral Activity and Structural Characteristics of the Nonglycosylated Central Subdomain of Human Respiratory Syncytial Virus Attachment (G) Glycoprotein. Journal of Biological Chemistry, 276(42), 38988-38994. https://doi.org/10.1074/jbc.M106288200. DOI: https://doi.org/10.1074/jbc.M106288200

Greulich, C., Diendorf, J., Simon, T., Eggeler, G., Epple, M., & Köller, M. (2011). Uptake and Intracellular Distribution of Silver Nanoparticles in Human Mesenchymal Stem Cells. Acta Biomaterialia, 7(1), 347-354. https://doi.org/10.1016/j.actbio.2010.08.003. DOI: https://doi.org/10.1016/j.actbio.2010.08.003

Gwyer Findlay, E., Currie, S. M., & Davidson, D. J. (2013). Cationic Host Defence Peptides : Potential as Antiviral therapeutics. BioDrugs, 27(5), 479-493. https://doi.org/10.1007/s40259-013-0039-0. DOI: https://doi.org/10.1007/s40259-013-0039-0

Hall, C. B., Kopelman, A. E., Douglas, R. G., Geiman, J. M., & Meagher, M. P. (1979). Neonatal Respiratory Syncytial Virus Infection. New England Journal of Medicine, 300(8), 393-396. https://doi.org/10.1056/NEJM197902223000803. DOI: https://doi.org/10.1056/NEJM197902223000803

Higgins, D., Trujillo, C., & Keech, C. (2016). Advances in RSV Vaccine Research and Development - A Global Agenda. Vaccine, 34(26), 2870-2875. https://doi.org/10.1016/j.vaccine.2016.03.109. DOI: https://doi.org/10.1016/j.vaccine.2016.03.109

Janai, H. K., Marks, M. I., Zaleska, M., & Stutman, H. R. (1990). Ribavirin : Adverse Drug Reactions, 1986 to 1988. Pediatric Infectious Disease Journal, 9(3), 209-211. https://doi.org/10.1097/00006454-199003000-00013. DOI: https://doi.org/10.1097/00006454-199003000-00013

Jartti, T., & Gern, J. E. (2017). Role of Viral Infections in the Development and Exacerbation of Asthma in Children. Journal of Allergy and Clinical Immunology, 140(4), 895-906. https://doi.org/10.1016/j.jaci.2017.08.003. DOI: https://doi.org/10.1016/j.jaci.2017.08.003

Jiang, T., Zhang, Z., Zhang, Y., Lv, H., Zhou, J., Li, C., Hou, L., & Zhang, Q. (2012). Dual-Functional Liposomes Based on pH-Responsive Cell-Penetrating Peptide and Hyaluronic Acid for Tumor-Targeted Anticancer Drug Delivery. Biomaterials, 33(36), 9246-9258. https://doi.org/10.1016/j.biomaterials.2012.09.027. DOI: https://doi.org/10.1016/j.biomaterials.2012.09.027

Jiao, C. Y., Delaroche, D., Burlina, F., Alves, I. D., Chassaing, G., & Sagan, S. (2009). Translocation and Endocytosis for Cell-Penetrating Peptide Internalization. Journal of Biological Chemistry, 284(49), 33957-33965. https://doi.org/10.1074/jbc.M109.056309. DOI: https://doi.org/10.1074/jbc.M109.056309

Joshi, S., Bawage, S., Tiwari, P., Kirby, D., Perrie, Y., Dennis, V., & Singh, S. R. (2019). Liposomes : A Promising Carrier for Respiratory Syncytial Virus therapeutics. Expert Opinion on Drug Delivery, 16(9), 969-980. https://doi.org/10.1080/17425247.2019.1652268. DOI: https://doi.org/10.1080/17425247.2019.1652268

Kabanov, A. V., Lemieux, P., Vinogradov, S., & Alakhov, V. (2002). Pluronic Block Copolymers : Novel Functional Molecules for Gene Therapy. Advanced Drug Delivery Reviews, 54(2), 223-233. https://doi.org/10.1016/s0169-409x(02)00018-2. DOI: https://doi.org/10.1016/S0169-409X(02)00018-2

Kamphuis, T., Stegmann, T., Meijerhof, T., Wilschut, J., & de Haan, A. (2013). A Virosomal Respiratory Syncytial Virus Vaccine Adjuvanted with Monophosphoryl Lipid a Provides Protection Against Viral Challenge without Priming for Enhanced Disease in Cotton Rats. Influenza and Other Respiratory Viruses, 7(6), 1227-1236. https://doi.org/10.1111/irv.12112. DOI: https://doi.org/10.1111/irv.12112

Keogan, S., Passic, S., & Krebs, F. C. (2012). Infection by CXCR4-Tropic Human Immunodeficiency Virus Type 1 is Inhibited by the Cationic Cell-Penetrating Peptide Derived from HIV-1 Tat. International Journal of Peptides, 2012, 349427. https://doi.org/10.1155/2012/349427. DOI: https://doi.org/10.1155/2012/349427

Kolli, D., Bao, X., & Casola, A. (2012). Human Metapneumovirus Antagonism of Innate Immune Responses. Viruses, 4(12), 3551-3571. https://doi.org/10.3390/v4123551. DOI: https://doi.org/10.3390/v4123551

Kolokoltsov, A. A., Deniger, D., Fleming, E. H., Roberts, N. J., Karpilow, J. M., & Davey, R. A. (2007). Small Interfering RNA Profiling Reveals Key Role of Clathrin-Mediated Endocytosis and Early Endosome Formation for Infection by Respiratory Syncytial Virus. Journal of Virology, 81(14), 7786-7800. https://doi.org/10.1128/JVI.02780-06. DOI: https://doi.org/10.1128/JVI.02780-06

Kota, S., Sabbah, A., Chang, T. H., Harnack, R., Xiang, Y., Meng, X., & Bose, S. (2008). Role of Human Beta-Defensin-2 During Tumor Necrosis Factor-Alpha/NF-kappaB-Mediated Innate Antiviral Response Against Human Respiratory Syncytial Virus. Journal of Biological Chemistry, 283(33), 22417-22429. https://doi.org/10.1074/jbc.M710415200. DOI: https://doi.org/10.1074/jbc.M710415200

Krajewski, K., Marchand, C., Long, Y. Q., Pommier, Y., & Roller, P. P. (2004). Synthesis and HIV-1 Integrase Inhibitory Activity of Dimeric and Tetrameric Analogs of Indolicidin. Bio Organic and Medicinal Chemistry Letters, 14(22), 5595-5598. https://doi.org/10.1016/j.bmcl.2004.08.061. DOI: https://doi.org/10.1016/j.bmcl.2004.08.061

Kurrikoff, K., Gestin, M., & Langel, Ü. (2016). Recent in Vivo Advances in Cell-Penetrating Peptide-Assisted Drug Delivery. Expert Opinion on Drug Delivery, 13(3), 373-387. https://doi.org/10.1517/17425247.2016.1125879. DOI: https://doi.org/10.1517/17425247.2016.1125879

Lalonde, M. S., Lobritz, M. A., Ratcliff, A., Chamanian, M., Athanassiou, Z., Tyagi, M., Wong, J., Robinson, J. A., Karn, J., Varani, G., & Arts, E. J. (2011). Inhibition of Both HIV-1 Reverse Transcription and Gene Expression by a Cyclic Peptide that Binds the Tat-Transactivating Response Element (TAR) RNA. PLOS Pathogens, 7(5). https://doi.org/10.1371/journal.ppat.1002038. DOI: https://doi.org/10.1371/journal.ppat.1002038

Lambert, D. M., Barney, S., Lambert, A. L., Guthrie, K., Medinas, R., Davis, D. E., Bucy, T., Erickson, J., Merutka, G., & Petteway, S. R. (1996). Peptides from Conserved Regions of Paramyxovirus Fusion (F) Proteins are Potent Inhibitors of Viral Fusion. Proceedings of the National Academy of Sciences of the United States of America, 93(5), 2186-2191. https://doi.org/10.1073/pnas.93.5.2186. DOI: https://doi.org/10.1073/pnas.93.5.2186

Lara, H. H., Ayala-Nuñez, N. V., Ixtepan-Turrent, L., & Rodriguez-Padilla, C. (2010). Mode of Antiviral Action of Silver Nanoparticles Against HIV-1. Journal of Nanobiotechnology, 8, 1. https://doi.org/10.1186/1477-3155-8-1. DOI: https://doi.org/10.1186/1477-3155-8-1

Madani, F., Lindberg, S., Langel, U., Futaki, S., & Gräslund, A. (2011). Mechanisms of Cellular Uptake of Cell-Penetrating Peptides. Journal of Biophysics, 2011, 414729. https://doi.org/10.1155/2011/414729. DOI: https://doi.org/10.1155/2011/414729

Maeda, H. (2010). Tumor-Selective Delivery of Macromolecular Drugs Via the EPR Effect : Background and Future Prospects. Bioconjugate Chemistry, 21(5), 797-802. https://doi.org/10.1021/bc100070g. DOI: https://doi.org/10.1021/bc100070g

Mann, D. A., & Frankel, A. D. (1991). Endocytosis and Targeting of Exogenous HIV-1 Tat Protein. EMBO Journal, 10(7), 1733-1739. https://doi.org/10.1002/j.1460-2075.1991.tb07697.x. DOI: https://doi.org/10.1002/j.1460-2075.1991.tb07697.x

Mayor, S., & Pagano, R. E. (2007). Pathways of Clathrin-Independent Endocytosis. Nature Reviews. Molecular Cell Biology, 8(8), 603-612. https://doi.org/10.1038/nrm2216. DOI: https://doi.org/10.1038/nrm2216

McErlean, E. M., Ziminska, M., McCrudden, C. M., McBride, J. W., Loughran, S. P., Cole, G., Mulholland, E. J., Kett, V., Buckley, N. E., Robson, T., Dunne, N. J., & McCarthy, H. O. (2021). Rational Design and Characterisation of a Linear Cell Penetrating Peptide for Non-Viral Gene Delivery. Journal of Controlled Release, 330, 1288-1299. https://doi.org/10.1016/j.jconrel.2020.11.037. DOI: https://doi.org/10.1016/j.jconrel.2020.11.037

Milletti, F. (2012). Cell-Penetrating Peptides : Classes, Origin, and Current Landscape. Drug Discovery today, 17(15-16), 850-860. https://doi.org/10.1016/j.drudis.2012.03.002. DOI: https://doi.org/10.1016/j.drudis.2012.03.002

Mino, T., Mori, T., Aoyama, Y., & Sera, T. (2008). Cell-Permeable Artificial Zinc-Finger Proteins as Potent Antiviral Drugs for Human Papillomaviruses. Archives of Virology, 153(7), 1291-1298. https://doi.org/10.1007/s00705-008-0125-7. DOI: https://doi.org/10.1007/s00705-008-0125-7

Mishra, A., Lai, G. H., Schmidt, N. W., Sun, V. Z., Rodriguez, A. R., tong, R., Tang, L., Cheng, J., Deming, T. J., Kamei, D. T., & Wong, G. C. (2011). Translocation of HIV TAT Peptide and Analogues Induced by Multiplexed Membrane and Cytoskeletal Interactions. Proceedings of the National Academy of Sciences of the United States of America, 108(41), 16883-16888. https://doi.org/10.1073/pnas.1108795108. DOI: https://doi.org/10.1073/pnas.1108795108

Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A Review on Antibacterial, Antiviral, and Antifungal Activity of Curcumin. BioMed Research International. https://doi.org/10.1155/2014/186864. DOI: https://doi.org/10.1155/2014/186864

Morris, D., Ansar, M., Speshock, J., Ivanciuc, T., Qu, Y., Casola, A., & Garofalo, R. (2019). Antiviral and Immunomodulatory Activity of Silver Nanoparticles in Experimental RSV Infection. Viruses, 11(8). https://doi.org/10.3390/v11080732. DOI: https://doi.org/10.3390/v11080732

Munyendo, W. L., Lv, H., Benza-Ingoula, H., Baraza, L. D., & Zhou, J. (2012). Cell Penetrating Peptides in the Delivery of Biopharmaceuticals. Biomolecules, 2(2), 187-202. https://doi.org/10.3390/biom2020187. DOI: https://doi.org/10.3390/biom2020187

Nascimento-Carvalho, A. C., Ruuskanen, O., & Nascimento-Carvalho, C. M. (2016). Comparison of the Frequency of Bacterial and Viral Infections Among Children with Community-Acquired Pneumonia Hospitalized Across Distinct Severity Categories: A Prospective Cross-Sectional Study. BMC Pediatrics, 16, 105. https://doi.org/10.1186/s12887-016-0645-3. DOI: https://doi.org/10.1186/s12887-016-0645-3

Nestor, J. J. (2009). The Medicinal Chemistry of Peptides. Current Medicinal Chemistry, 16(33), 4399-4418. https://doi.org/10.2174/092986709789712907. DOI: https://doi.org/10.2174/092986709789712907

Oehlke, J., Krause, E., Wiesner, B., Beyermann, M., & Bienert, M. (1997). Extensive Cellular Uptake into Endothelial Cells of an Amphipathic Beta-Sheet Forming Peptide. FEBS Letters, 415(2), 196-199. https://doi.org/10.1016/s0014-5793(97)01123-x. DOI: https://doi.org/10.1016/S0014-5793(97)01123-X

Oehlke, J., Scheller, A., Wiesner, B., Krause, E., Beyermann, M., Klauschenz, E., Melzig, M., & Bienert, M. (1998). Cellular Uptake of an Alpha-Helical Amphipathic Model Peptide with the Potential to Deliver Polar Compounds into the Cell Interior Non-Endocytically. Biochimica et Biophysica Acta, 1414(1-2), 127-139. https://doi.org/10.1016/s0005-2736(98)00161-8. DOI: https://doi.org/10.1016/S0005-2736(98)00161-8

Ogra, P. L. (2004). Respiratory Syncytial Virus : the Virus, the Disease and the Immune Response. Paediatric Respiratory Reviews, 5, Suppl. A, S119-S126. https://doi.org/10.1016/s1526-0542(04)90023-1. DOI: https://doi.org/10.1016/S1526-0542(04)90023-1

Okiro, E. A., Ngama, M., Bett, A., Cane, P. A., Medley, G. F., & James Nokes, D. (2008). Factors Associated with Increased Risk of Progression to Respiratory Syncytial Virus-Associated Pneumonia in Young Kenyan Children. Tropical Medicine and International Health, 13(7), 914-926. https://doi.org/10.1111/j.1365-3156.2008.02092.x. DOI: https://doi.org/10.1111/j.1365-3156.2008.02092.x

Otsuka, H., Nagasaki, Y., & Kataoka, K. (2003). Pegylated Nanoparticles for Biological and Pharmaceutical Applications. Advanced Drug Delivery Reviews, 55(3), 403-419. https://doi.org/10.1016/s0169-409x(02)00226-0. DOI: https://doi.org/10.1016/S0169-409X(02)00226-0

Padari, K., Koppel, K., Lorents, A., Hällbrink, M., Mano, M., Pedroso de Lima, M. C., & Pooga, M. (2010). S4(13) -PV Cell-Penetrating Peptide forms Nanoparticle-Like Structures to Gain Entry into Cells. Bioconjugate Chemistry, 21(4), 774-783. https://doi.org/10.1021/bc900577e. DOI: https://doi.org/10.1021/bc900577e

Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano Based Drug Delivery Systems: Recent Developments and Future Prospects. Journal of Nanobiotechnology, 16(1), 71. https://doi.org/10.1186/s12951-018-0392-8. DOI: https://doi.org/10.1186/s12951-018-0392-8

Perk, Y., & Özdil, M. (2018). Respiratory Syncytial Virüs Infections in Neonates and Infants. Turk Pediatri Arsivi, 53(2), 63-70. https://doi.org/10.5152/TurkPediatriArs.2018.6939. DOI: https://doi.org/10.5152/TurkPediatriArs.2018.6939

Persson, B. D., Jaffe, A. B., Fearns, R., & Danahay, H. (2014). Respiratory Syncytial Virus Can Infect Basal Cells and Alter Human Airway Epithelial Differentiation. PLOS ONE, 9(7). https://doi.org/10.1371/journal.pone.0102368. DOI: https://doi.org/10.1371/journal.pone.0102368

Pickles, R. J. (2013). Human Airway Epithelial Cell Cultures for Modeling Respiratory Syncytial Virus Infection. Current topics in Microbiology and Immunology, 372, 371-387. https://doi.org/10.1007/978-3-642-38919-1_19. DOI: https://doi.org/10.1007/978-3-642-38919-1_19

Pickles, R. J., & DeVincenzo, J. P. (2015). Respiratory Syncytial Virus (RSV) and its Propensity for Causing Bronchiolitis. Journal of Pathology, 235(2), 266-276. https://doi.org/10.1002/path.4462. DOI: https://doi.org/10.1002/path.4462

Pooga, M., Hällbrink, M., Zorko, M., & Langel, U. (1998). Cell Penetration by Transportan. FASEB Journal, 12(1), 67-77. https://doi.org/10.1096/fasebj.12.1.67. DOI: https://doi.org/10.1096/fsb2fasebj.12.1.67

Pouny, Y., Rapaport, D., Mor, A., Nicolas, P., & Shai, Y. (1992). Interaction of Antimicrobial Dermaseptin and its Fluorescently Labeled Analogues with Phospholipid Membranes. Biochemistry, 31(49), 12416-12423. https://doi.org/10.1021/bi00164a017. DOI: https://doi.org/10.1021/bi00164a017

Powell, K. (2021). The Race to Make Vaccines for a Dangerous Respiratory Virus. Nature, 600(7889), 379-380. https://doi.org/10.1038/d41586-021-03704-y. DOI: https://doi.org/10.1038/d41586-021-03704-y

Qiao, J., Li, A., & Jin, X. (2011). TSLP from RSV-Stimulated Rat Airway Epithelial Cells Activates Myeloid Dendritic Cells. Immunology and Cell Biology, 89(2), 231-238. https://doi.org/10.1038/icb.2010.85. DOI: https://doi.org/10.1038/icb.2010.85

Ramos-Fernández, J. M., Moreno-Pérez, D., Gutiérrez-Bedmar, M., Hernández-Yuste, A., Cordón-Martínez, A. M., Milano-Manso, G., & Urda-Cardona, A. (2017). Predicción de la Evolución de la Bronquiolitis Por Virus Respiratorio Sincitial en Lactantes Menores de 6 Meses [Prediction of Severe Course in Infants with RSV Bronchiolitis under 6 Months. Spain]. Revista Espanola de Salud Publica, 91.

Reissmann, S. (2014). Cell Penetration : Scope and Limitations by the Application of Cell-Penetrating Peptides. Journal of Peptide Science, 20(10), 760-784. https://doi.org/10.1002/psc.2672. DOI: https://doi.org/10.1002/psc.2672

Renukuntla, J., Vadlapudi, A. D., Patel, A., Boddu, S. H., & Mitra, A. K. (2013). Approaches for Enhancing Oral Bioavailability of Peptides and Proteins. International Journal of Pharmaceutics, 447(1-2), 75-93. https://doi.org/10.1016/j.ijpharm.2013.02.030. DOI: https://doi.org/10.1016/j.ijpharm.2013.02.030

Rijsbergen, L. C., van Dijk, L. L. A., Engel, M. F. M., de Vries, R. D., & de Swart, R. L. (2021). In Vitro Modelling of Respiratory Virus Infections in Human Airway Epithelial Cells - A Systematic Review. Frontiers in Immunology, 12, 683002. https://doi.org/10.3389/fimmu.2021.683002. DOI: https://doi.org/10.3389/fimmu.2021.683002

Ruseska, I., & Zimmer, A. (2020). Internalization Mechanisms of Cell-Penetrating Peptides. Beilstein Journal of Nanotechnology, 11, 101-123. https://doi.org/10.3762/bjnano.11.10. DOI: https://doi.org/10.3762/bjnano.11.10

Russell, C. D., Unger, S. A., Walton, M., & Schwarze, J. (2017). The Human Immune Response to Respiratory Syncytial Virus Infection. Clinical Microbiology Reviews, 30(2), 481-502. https://doi.org/10.1128/CMR.00090-16. DOI: https://doi.org/10.1128/CMR.00090-16

Russi, J. C., Delfraro, A., Borthagaray, M. D., Velazquez, B., García-Barreno, B., & Hortal, M. (1993). Evaluation of Immunoglobulin E-Specific Antibodies and Viral Antigens in Nasopharyngeal Secretions of Children with Respiratory Syncytial Virus Infections. Journal of Clinical Microbiology, 31(4), 819-823. https://doi.org/10.1128/jcm.31.4.819-823.1993. DOI: https://doi.org/10.1128/jcm.31.4.819-823.1993

Ruuskanen, O., & Ogra, P. L. (1993). Respiratory Syncytial Virus. Current Problems in Pediatrics, 23(2), 50-79. https://doi.org/10.1016/0045-9380(93)90003-u. DOI: https://doi.org/10.1016/0045-9380(93)90003-U

Sadeghian, I., Heidari, R., Sadeghian, S., Raee, M. J., & Negahdaripour, M. (2022). Potential of Cell-Penetrating Peptides (Cpps) in Delivery of Antiviral therapeutics and Vaccines. European Journal of Pharmaceutical Sciences, 169, 106094. https://doi.org/10.1016/j.ejps.2021.106094. DOI: https://doi.org/10.1016/j.ejps.2021.106094

Scott, J. A., Wonodi, C., Moïsi, J. C., Deloria-Knoll, M., DeLuca, A. N., Karron, R. A., Bhat, N., Murdoch, D. R., Crawley, J., Levine, O. S., O'Brien, K. L., Feikin, D. R., & Pneumonia Methods Working Group. (2012). The Definition of Pneumonia, the Assessment of Severity, and Clinical Standardization in the Pneumonia Etiology Research for Child Health Study. Clinical Infectious Diseases, 54, (Suppl 2), S109-S116. https://doi.org/10.1093/cid/cir1065. DOI: https://doi.org/10.1093/cid/cir1065

Shepherd, N. E., Hoang, H. N., Desai, V. S., Letouze, E., Young, P. R., & Fairlie, D. P. (2006). Modular Alpha-Helical Mimetics with Antiviral Activity Against Respiratory Syncitial Virus. Journal of the American Chemical Society, 128(40), 13284-13289. https://doi.org/10.1021/ja064058a. DOI: https://doi.org/10.1021/ja064058a

Shi, T., McAllister, D. A., O'Brien, K. L., Simoes, E. A. F., Madhi, S. A., Gessner, B. D., Polack, F. P., Balsells, E., Acacio, S., Aguayo, C., Alassani, I., Ali, A., Antonio, M., Awasthi, S., Awori, J. O., Azziz-Baumgartner, E., Baggett, H. C., Baillie, V. L., Balmaseda, A., RSV Global Epidemiology Network. (2017). Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Young Children in 2015 : A Systematic Review and Modelling Study. Lancet, 390(10098), 946-958. https://doi.org/10.1016/S0140-6736(17)30938-8. DOI: https://doi.org/10.1016/S0140-6736(17)30938-8

Shilovskiy, I. P., andreev, S. M., Kozhikhova, K. V., Nikolskii, A. A., & Khaitov, M. R. (2019). Prospects for the Use of Peptides Against Respiratory Syncytial Virus. Molekuliarnaia Biologiia, 53(4), 541-560. https://doi.org/10.1134/S002689841904013X. DOI: https://doi.org/10.1134/S0026893319040125

Silhol, M., Tyagi, M., Giacca, M., Lebleu, B., & Vivès, E. (2002). Different Mechanisms for Cellular Internalization of the HIV-1 Tat-Derived Cell Penetrating Peptide and Recombinant Proteins Fused to Tat Tat. European Journal of Biochemistry, 269(2), 494-501. https://doi.org/10.1046/j.0014-2956.2001.02671.x. DOI: https://doi.org/10.1046/j.0014-2956.2001.02671.x

Silva, S., Almeida, A. J., & Vale, N. (2019). Combination of Cell-Penetrating Peptides with Nanoparticles for Therapeutic Application : A Review. Biomolecules, 9(1). https://doi.org/10.3390/biom9010022. DOI: https://doi.org/10.3390/biom9010022

Simões, E. A. F., Bont, L., Manzoni, P., Fauroux, B., Paes, B., Figueras-Aloy, J., Checchia, P. A., & Carbonell-Estrany, X. (2018). Past, Present and Future Approaches to the Prevention and Treatment of Respiratory Syncytial Virus Infection in Children. Infectious Diseases and therapy, 7(1), 87-120. https://doi.org/10.1007/s40121-018-0188-z. DOI: https://doi.org/10.1007/s40121-018-0188-z

Singh, S. R. (2012). Anti Respiratory Syncytial Virus Peptide Functionalized Gold Nanoparticles, A.S. University, U.S.

Soto, J. A., Gálvez, N. M. S., Pacheco, G. A., Bueno, S. M., & Kalergis, A. M. (2020). Antibody Development for Preventing the Human Respiratory Syncytial Virus Pathology. Molecular Medicine, 26(1), 35. https://doi.org/10.1186/s10020-020-00162-6. DOI: https://doi.org/10.1186/s10020-020-00162-6

Srinivasakumar, N., Ogra, P. L., & Flanagan, T. D. (1991). Characteristics of Fusion of Respiratory Syncytial Virus With HEp-2 Cells as Measured by R18 Fluorescence Dequenching Assay. Journal of Virology, 65(8), 4063-4069. https://doi.org/10.1128/JVI.65.8.4063-4069.1991. DOI: https://doi.org/10.1128/jvi.65.8.4063-4069.1991

Sun, Z., Pan, Y., Jiang, S., & Lu, L. (2013). Respiratory Syncytial Virus Entry Inhibitors Targeting the F Protein. Viruses, 5(1), 211-225. https://doi.org/10.3390/v5010211. DOI: https://doi.org/10.3390/v5010211

Tang, Z., Zhang, X., Shu, Y., Guo, M., Zhang, H., & Tao, W. (2021). Insights from Nanotechnology in COVID-19 Treatment. Nano today, 36. https://doi.org/10.1016/j.nantod.2020.101019. DOI: https://doi.org/10.1016/j.nantod.2020.101019

Taylor, G. (2017). Animal Models of Respiratory Syncytial Virus Infection. Vaccine, 35(3), 469-480. https://doi.org/10.1016/j.vaccine.2016.11.054. DOI: https://doi.org/10.1016/j.vaccine.2016.11.054

Telcian, A. G., Laza-Stanca, V., Edwards, M. R., Harker, J. A., Wang, H., Bartlett, N. W., Mallia, P., Zdrenghea, M. T., Kebadze, T., Coyle, A. J., Openshaw, P. J., Stanciu, L. A., & Johnston, S. L. (2011). RSV-Induced Bronchial Epithelial Cell PD-L1 Expression Inhibits CD8+ T Cell Nonspecific Antiviral Activity. Journal of Infectious Diseases, 203(1), 85-94. https://doi.org/10.1093/infdis/jiq020. DOI: https://doi.org/10.1093/infdis/jiq020

Teng, M. N., & Collins, P. L. (1998). Identification of the Respiratory Syncytial Virus Proteins Required for Formation and Passage of Helper-Dependent Infectious Particles. Journal of Virology, 72(7), 5707-5716. https://doi.org/10.1128/JVI.72.7.5707-5716.1998. DOI: https://doi.org/10.1128/JVI.72.7.5707-5716.1998

Ter-Avetisyan, G., Tünnemann, G., Nowak, D., Nitschke, M., Herrmann, A., Drab, M., & Cardoso, M. C. (2009). Cell Entry of Arginine-Rich Peptides is Independent of Endocytosis. Journal of Biological Chemistry, 284(6), 3370-3378. https://doi.org/10.1074/jbc.M805550200. DOI: https://doi.org/10.1074/jbc.M805550200

Thorén, P. E., Persson, D., Isakson, P., Goksör, M., Onfelt, A., & Nordén, B. (2003). Uptake of Analogs of Penetration, Tat. Biochemical and Biophysical Research Communications, 307(1), 100-107. https://doi.org/10.1016/s0006-291x(03)01135-5. DOI: https://doi.org/10.1016/S0006-291X(03)01135-5

Tiwari, P. M., Eroglu, E., Bawage, S. S., Vig, K., Miller, M. E., Pillai, S., Dennis, V. A., & Singh, S. R. (2014). Enhanced Intracellular Translocation and Biodistribution of Gold Nanoparticles Functionalized with a Cell-Penetrating Peptide (VG-21) from Vesicular Stomatitis Virus. Biomaterials, 35(35), 9484-9494. https://doi.org/10.1016/j.biomaterials.2014.07.032. DOI: https://doi.org/10.1016/j.biomaterials.2014.07.032

Tünnemann, G., Ter-Avetisyan, G., Martin, R. M., Stöckl, M., Herrmann, A., & Cardoso, M. C. (2008). Live-Cell Analysis of Cell Penetration Ability and toxicity of Oligo-Arginines. Journal of Peptide Science, 14(4), 469-476. https://doi.org/10.1002/psc.968. DOI: https://doi.org/10.1002/psc.968

Utley, T. J., Ducharme, N. A., Varthakavi, V., Shepherd, B. E., Santangelo, P. J., Lindquist, M. E., Goldenring, J. R., & Crowe, J. E. (2008). Respiratory Syncytial Virus Uses a Vps4-Independent Budding Mechanism Controlled by Rab11-FIP2. Proceedings of the National Academy of Sciences of the United States of America, 105(29), 10209-10214. https://doi.org/10.1073/pnas.0712144105. DOI: https://doi.org/10.1073/pnas.0712144105

Vanheule, V., Vervaeke, P., Mortier, A., Noppen, S., Gouwy, M., Snoeck, R., andrei, G., Van Damme, J., Liekens, S., & Proost, P. (2016). Basic Chemokine-Derived Glycosaminoglycan Binding Peptides Exert Antiviral Properties Against Dengue Virus Serotype 2, Herpès Simplex Virus-1 and Respiratory Syncytial Virus. Biochemical Pharmacology, 100, 73-85. https://doi.org/10.1016/j.bcp.2015.11.001. DOI: https://doi.org/10.1016/j.bcp.2015.11.001

Verdurmen, W. P., Thanos, M., Ruttekolk, I. R., Gulbins, E., & Brock, R. (2010). Cationic Cell-Penetrating Peptides Induce Ceramide Formation Via Acid Sphingomyelinase : Implications for Uptake. Journal of Controlled Release, 147(2), 171-179. https://doi.org/10.1016/j.jconrel.2010.06.030. DOI: https://doi.org/10.1016/j.jconrel.2010.06.030

Veronese, F. M., & Mero, A. (2008). The Impact of Pegylation on Biological Therapies. BioDrugs, 22(5), 315-329. https://doi.org/10.2165/00063030-200822050-00004. DOI: https://doi.org/10.2165/00063030-200822050-00004

Wadia, J. S., Stan, R. V., & Dowdy, S. F. (2004). Transducible TAT-HA Fusogenic Peptide Enhances Escape of TAT-Fusion Proteins After Lipid Raft Macropinocytosis. Nature Medicine, 10(3), 310-315. https://doi.org/10.1038/nm996. DOI: https://doi.org/10.1038/nm996

Wang, D., Cummins, C., Bayliss, S., Sandercock, J., & Burls, A. (2008). Immunoprophylaxis Against Respiratory Syncytial Virus (RSV) With Palivizumab in Children : A Systematic Review and Economic Evaluation. Health Technology Assessment, 12(36), iii, ix-x, 1-86. https://doi.org/10.3310/hta12360. DOI: https://doi.org/10.3310/hta12360

Wang, E., Sun, X., Qian, Y., Zhao, L., Tien, P., & Gao, G. F. (2003). Both Heptad Repeats of Human Respiratory Syncytial Virus Fusion Protein are Potent Inhibitors of Viral Fusion. Biochemical and Biophysical Research Communications, 302(3), 469-475. https://doi.org/10.1016/s0006-291x(03)00197-9. DOI: https://doi.org/10.1016/S0006-291X(03)00197-9

Wang, F., Wang, Y., Zhang, X., Zhang, W., Guo, S., & Jin, F. (2014). Recent Progress of Cell-Penetrating Peptides as New Carriers for Intracellular Cargo Delivery. Journal of Controlled Release, 174, 126-136. https://doi.org/10.1016/j.jconrel.2013.11.020. DOI: https://doi.org/10.1016/j.jconrel.2013.11.020

Wang, Y. F., Xu, X., Fan, X., Zhang, C., Wei, Q., Wang, X., Guo, W., Xing, W., Yu, J., Yan, J. L., & Liang, H. P. (2011). A Cell-Penetrating Peptide Suppresses Inflammation by Inhibiting NF-κB Signaling. Molecular therapy, 19(10), 1849-1857. https://doi.org/10.1038/mt.2011.82. DOI: https://doi.org/10.1038/mt.2011.82

Welliver, R. C. (2003). Respiratory Syncytial Virus and Other Respiratory Viruses. Pediatric Infectious Disease Journal, 22(2), Suppl., S6-S10, discussion S10-S12. https://doi.org/10.1097/01.inf.0000053880.92496.db. DOI: https://doi.org/10.1097/01.inf.0000053880.92496.db

Welliver, R. C. (2003). Review of Epidemiology and Clinical Risk Factors for Severe Respiratory Syncytial Virus (RSV) Infection. Journal of Pediatrics, 143(5), Suppl., S112-S117. https://doi.org/10.1067/s0022-3476(03)00508-0. DOI: https://doi.org/10.1067/S0022-3476(03)00508-0

Xie, J., Bi, Y., Zhang, H., Dong, S., Teng, L., Lee, R. J., & Yang, Z. (2020). Cell-Penetrating Peptides in Diagnosis and Treatment of Human Diseases: From Preclinical Research to Clinical Application. Frontiers in Pharmacology, 11, 697. https://doi.org/10.3389/fphar.2020.00697. DOI: https://doi.org/10.3389/fphar.2020.00697

Yadavalli, T., & Shukla, D. (2017). Role of Metal and Metal Oxide Nanoparticles as Diagnostic and Therapeutic Tools for Highly Prevalent Viral Infections. Nanomedicine : Nanotechnology, Biology, and Medicine, 13(1), 219-230. https://doi.org/10.1016/j.nano.2016.08.016. DOI: https://doi.org/10.1016/j.nano.2016.08.016

Zhang, L., Peeples, M. E., Boucher, R. C., Collins, P. L., & Pickles, R. J. (2002). Respiratory Syncytial Virus Infection of Human Airway Epithelial Cells is Polarized, Specific to Ciliated Cells, and Without Obvious Cytopathology. Journal of Virology, 76(11), 5654-5666. https://doi.org/10.1128/jvi.76.11.5654-5666.2002. DOI: https://doi.org/10.1128/JVI.76.11.5654-5666.2002

Zhang, P., Moreno, R., Lambert, P. F., & DiMaio, D. (2020). Cell-Penetrating Peptide Inhibits Retromer-Mediated Human Papillomavirus Trafficking During Virus Entry. Proceedings of the National Academy of Sciences of the United States of America, 117(11), 6121-6128. https://doi.org/10.1073/pnas.1917748117. DOI: https://doi.org/10.1073/pnas.1917748117

Ziegler, A., Blatter, X. L., Seelig, A., & Seelig, J. (2003). Protein Transduction Domains of HIV-1 and SIV TAT Interact with Charged Lipid Vesicles. Binding Mechanism and Thermodynamic Analysis. Biochemistry, 42(30), 9185-9194. https://doi.org/10.1021/bi0346805. DOI: https://doi.org/10.1021/bi0346805

Downloads

Published

2023-08-09

How to Cite

Sharma, H. N. (2023). CELL-PENETRATING PEPTIDES NANO-CONJUGATED WITH METALLIC NANOPARTICLE FOR THE DEVELOPMENT OF THERAPEUTIC AND OR PROPHYLACTIC AGENTS AGAINST RESPIRATORY SYNCYTIAL VIRUS. International Journal of Research -GRANTHAALAYAH, 11(7), 67–95. https://doi.org/10.29121/granthaalayah.v11.i7.2023.5200