COVID-19 OVERVIEW IN SAUDI ARABIA USING THE SIRV MODEL

Authors

  • Sadiqah Al Marzooq Al Yamamah University, Department of Mathematics and Natural Sciences, College of Engineering and Architecture, Riyadh, Saudi Arabia

DOI:

https://doi.org/10.29121/granthaalayah.v11.i3.2023.5079

Keywords:

SIRV, COVID-19, Model, Vaccine, Outbreak, Pandemic

Abstract [English]

In this paper, we propose a modified SIR model with the consideration of vaccinated individuals called SIRV. We provide a proof that the model’s solution is non-negative and derive the model reproduction number and steady state. Finally, we apply the model to analyze COVID -19 pandemic in Saudi Arabia over the last three years.

Downloads

Download data is not yet available.

References

Adiga, A., Dubhashi, D., Lewis, B., Marathe, M., Venkatramanan, S., & Vullikanti, A. (2020). Mathematical Models for Covid-19 Pandemic : A Comparative Analysis. Journal of the Indian Institute of Science, 100(4), 793-807. https://doi.org/10.1007/s41745-020-00200-6. DOI: https://doi.org/10.1007/s41745-020-00200-6

Alboaneen, D., Pranggono, B., Alshammari, D., Alqahtani, N., & Alyaffer, R. (2020). Predicting the Epidemiological Outbreak of the Coronavirus Disease 2019 (Covid-19) In Saudi Arabia. International Journal of Environmental Research and Public Health, 17(12). https://doi.org/10.3390%2Fijerph17124568. DOI: https://doi.org/10.3390/ijerph17124568

Ameen, I. G., Ali, H. M., Alharthi, M. R., Abdel-Aty, A. H., & Elshehabey, H. M. (2021). Investigation of the Dynamics of Covid-19 With a Fractional Mathematical Model : A Comparative Study with Actual Data. Results in Physics, 23. https://doi.org/10.1016/j.rinp.2021.103976. DOI: https://doi.org/10.1016/j.rinp.2021.103976

Anand, N., Sabarinath, A., Geetha, S., & Somanath, S. (2020). Predicting the Spread of COVID-19 Using SIR Model Augmented to Incorporate Quarantine and Testing. Transactions of the Indian National Academy of Engineering, 5(2), 141–148. https://doi.org/10.1007/s41403-020-00151-5. DOI: https://doi.org/10.1007/s41403-020-00151-5

Barry, M., Ghonem, L., Alsharidi. A., Alanazi, A., Alotaibi, N.H., Al-Shahrani, F.S., Al Majid, F., BaHammam, A.S. (2020). Coronavirus Disease-2019 Pandemic in the Kingdom of Saudi Arabia : Mitigation Measures and Hospital Preparedness. Journal of Nature and Science of Medicine, 3(3), 155. https://www.jnsmonline.org/text.asp?2020/3/3/155/282983.

Ghostine, R., Gharamti, M., Hassrouny, S., & Hoteit, I. (2021). An Extended Seir Model with Vaccination for Forecasting the Covid-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter. Mathematics, 9(6), 636. https://doi.org/10.3390/math9060636. DOI: https://doi.org/10.3390/math9060636

Jiang, Y. X., Xiong, X., Zhang, S., Wang, J. X., Li, J. C., & Du, L. (2021). Modeling and Prediction of the Transmission Dynamics of Covid-19 Based on the SINDy-LM Method. Nonlinear Dynamics, 105(3), 2775-2794. https://doi.org/10.1007%2Fs11071-021-06707-6. DOI: https://doi.org/10.1007/s11071-021-06707-6

Kozioł, K., Stanisławski, R., & Bialic, G. (2020). Fractional-Order Sir Epidemic Model for Transmission Prediction of Covid-19 Disease. Applied Sciences, 10(23), 8316. https://doi.org/10.3390/app10238316. DOI: https://doi.org/10.3390/app10238316

Lounis, M., & Bagal, D. K. (2020). Estimation of SIR Model’s Parameters of COVID-19 in Algeria. Bulletin of the National Research Centre, 44(1), 1-6. https://doi.org/10.1186/s42269-020-00434-5. DOI: https://doi.org/10.1186/s42269-020-00434-5

Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR Model for Covid-19 Dynamics Incorporating the Environment and Social Distancing. BMC Research Notes, 13(1), 1-5. https://doi.org/10.1186%2Fs13104-020-05192-1. DOI: https://doi.org/10.1186/s13104-020-05192-1

Oliveira, J. F., Jorge, D. C., Veiga, R. V., Rodrigues, M. S., Torquato, M. F., da Silva, N. B., Fiaccone, R. L., Cardim, L. L., Pereira, F. A. C., Castro, C. P. D., Paiva, A. S. S., Amad, A. A. S., Lima, E. A. B. F., Souza, D. S., Pinho, S. T. R., Ramos, P. I. P., Andrade, R. F. S. (2021). Mathematical Modeling of COVID-19 in 14.8 Million Individuals in Bahia, Brazil. Nature communications, 12(1), 333. https://doi.org/10.1038/s41467-020-19798-3. DOI: https://doi.org/10.1038/s41467-020-19798-3

Riyapan, P., Shuaib, S. E., & Intarasit, A. (2021). A Mathematical Model of Covid-19 Pandemic : A Case Study of Bangkok, Thailand. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2021/6664483. DOI: https://doi.org/10.1155/2021/6664483

Saudi Health Council.

Saudi Ministry of Health.

Youssef, H. M., Alghamdi, N. A., Ezzat, M. A., El-Bary, A. A., & Shawky, A. M. (2020). A New Dynamical Modeling Seir with Global Analysis Applied to the Real Data of Spreading COVID-19 in Saudi Arabia. Math. Biosci. Eng, 17(6), 7018-7044. https://doi.org/10.3934/mbe.2020362. DOI: https://doi.org/10.3934/mbe.2020362

Downloads

Published

2023-03-31

How to Cite

Al Marzooq, S. (2023). COVID-19 OVERVIEW IN SAUDI ARABIA USING THE SIRV MODEL. International Journal of Research -GRANTHAALAYAH, 11(3), 16–24. https://doi.org/10.29121/granthaalayah.v11.i3.2023.5079