COVID-19 OVERVIEW IN SAUDI ARABIA USING THE SIRV MODEL
DOI:
https://doi.org/10.29121/granthaalayah.v11.i3.2023.5079Keywords:
SIRV, COVID-19, Model, Vaccine, Outbreak, PandemicAbstract [English]
In this paper, we propose a modified SIR model with the consideration of vaccinated individuals called SIRV. We provide a proof that the model’s solution is non-negative and derive the model reproduction number and steady state. Finally, we apply the model to analyze COVID -19 pandemic in Saudi Arabia over the last three years.
Downloads
References
Adiga, A., Dubhashi, D., Lewis, B., Marathe, M., Venkatramanan, S., & Vullikanti, A. (2020). Mathematical Models for Covid-19 Pandemic : A Comparative Analysis. Journal of the Indian Institute of Science, 100(4), 793-807. https://doi.org/10.1007/s41745-020-00200-6. DOI: https://doi.org/10.1007/s41745-020-00200-6
Alboaneen, D., Pranggono, B., Alshammari, D., Alqahtani, N., & Alyaffer, R. (2020). Predicting the Epidemiological Outbreak of the Coronavirus Disease 2019 (Covid-19) In Saudi Arabia. International Journal of Environmental Research and Public Health, 17(12). https://doi.org/10.3390%2Fijerph17124568. DOI: https://doi.org/10.3390/ijerph17124568
Ameen, I. G., Ali, H. M., Alharthi, M. R., Abdel-Aty, A. H., & Elshehabey, H. M. (2021). Investigation of the Dynamics of Covid-19 With a Fractional Mathematical Model : A Comparative Study with Actual Data. Results in Physics, 23. https://doi.org/10.1016/j.rinp.2021.103976. DOI: https://doi.org/10.1016/j.rinp.2021.103976
Anand, N., Sabarinath, A., Geetha, S., & Somanath, S. (2020). Predicting the Spread of COVID-19 Using SIR Model Augmented to Incorporate Quarantine and Testing. Transactions of the Indian National Academy of Engineering, 5(2), 141–148. https://doi.org/10.1007/s41403-020-00151-5. DOI: https://doi.org/10.1007/s41403-020-00151-5
Barry, M., Ghonem, L., Alsharidi. A., Alanazi, A., Alotaibi, N.H., Al-Shahrani, F.S., Al Majid, F., BaHammam, A.S. (2020). Coronavirus Disease-2019 Pandemic in the Kingdom of Saudi Arabia : Mitigation Measures and Hospital Preparedness. Journal of Nature and Science of Medicine, 3(3), 155. https://www.jnsmonline.org/text.asp?2020/3/3/155/282983.
Ghostine, R., Gharamti, M., Hassrouny, S., & Hoteit, I. (2021). An Extended Seir Model with Vaccination for Forecasting the Covid-19 Pandemic in Saudi Arabia Using an Ensemble Kalman Filter. Mathematics, 9(6), 636. https://doi.org/10.3390/math9060636. DOI: https://doi.org/10.3390/math9060636
Jiang, Y. X., Xiong, X., Zhang, S., Wang, J. X., Li, J. C., & Du, L. (2021). Modeling and Prediction of the Transmission Dynamics of Covid-19 Based on the SINDy-LM Method. Nonlinear Dynamics, 105(3), 2775-2794. https://doi.org/10.1007%2Fs11071-021-06707-6. DOI: https://doi.org/10.1007/s11071-021-06707-6
Kozioł, K., Stanisławski, R., & Bialic, G. (2020). Fractional-Order Sir Epidemic Model for Transmission Prediction of Covid-19 Disease. Applied Sciences, 10(23), 8316. https://doi.org/10.3390/app10238316. DOI: https://doi.org/10.3390/app10238316
Lounis, M., & Bagal, D. K. (2020). Estimation of SIR Model’s Parameters of COVID-19 in Algeria. Bulletin of the National Research Centre, 44(1), 1-6. https://doi.org/10.1186/s42269-020-00434-5. DOI: https://doi.org/10.1186/s42269-020-00434-5
Mwalili, S., Kimathi, M., Ojiambo, V., Gathungu, D., & Mbogo, R. (2020). SEIR Model for Covid-19 Dynamics Incorporating the Environment and Social Distancing. BMC Research Notes, 13(1), 1-5. https://doi.org/10.1186%2Fs13104-020-05192-1. DOI: https://doi.org/10.1186/s13104-020-05192-1
Oliveira, J. F., Jorge, D. C., Veiga, R. V., Rodrigues, M. S., Torquato, M. F., da Silva, N. B., Fiaccone, R. L., Cardim, L. L., Pereira, F. A. C., Castro, C. P. D., Paiva, A. S. S., Amad, A. A. S., Lima, E. A. B. F., Souza, D. S., Pinho, S. T. R., Ramos, P. I. P., Andrade, R. F. S. (2021). Mathematical Modeling of COVID-19 in 14.8 Million Individuals in Bahia, Brazil. Nature communications, 12(1), 333. https://doi.org/10.1038/s41467-020-19798-3. DOI: https://doi.org/10.1038/s41467-020-19798-3
Riyapan, P., Shuaib, S. E., & Intarasit, A. (2021). A Mathematical Model of Covid-19 Pandemic : A Case Study of Bangkok, Thailand. Computational and Mathematical Methods in Medicine. https://doi.org/10.1155/2021/6664483. DOI: https://doi.org/10.1155/2021/6664483
Saudi Health Council.
Saudi Ministry of Health.
Youssef, H. M., Alghamdi, N. A., Ezzat, M. A., El-Bary, A. A., & Shawky, A. M. (2020). A New Dynamical Modeling Seir with Global Analysis Applied to the Real Data of Spreading COVID-19 in Saudi Arabia. Math. Biosci. Eng, 17(6), 7018-7044. https://doi.org/10.3934/mbe.2020362. DOI: https://doi.org/10.3934/mbe.2020362
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sadiqah Al Marzooq
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.