GRAPHS WITH THE BURNING NUMBERS EQUAL THREE

Authors

DOI:

https://doi.org/10.29121/granthaalayah.v11.i2.2023.5057

Keywords:

Burning Sequence, Maximum Degree, Burning Number

Abstract [English]

The concept of burning number is inspired by the firefighting problem, which is a new measure to describe the speed of information spread. For a general non-trivial connected graph

Downloads

Download data is not yet available.

References

Alon, N., Prałat, P., and Wormald, N. (2009). Cleaning Regular Graphs with Brushes. SIAM Journal on Discrete Mathematics, 23(1), 233-250. https://doi.org/10.1137/070703053.

Balogh, J., Bollobás, B., and Morris, R. (2012). Graph Bootstrap Percolation. Random Structures and Algorithms, 41(4), 413-440. https://doi.org/10.1002/rsa.20458.

Barghi, A., and Winkler, P. (2015). Firefighting On a Random Geometric Graph. Random Structures and Algorithms, 46(3), 466-477. https://doi.org/10.1002/rsa.20511.

Bessy, S., Bonato, A., Janssen, J., Rautenbach, D., and Roshanbin, E. (2017). S0166218X17304353. Bounds on the Burning Number. Discrete Applied Mathematics, 232, 73-87. https://doi.org/10.1016/j.dam.2017.07.016.

Bonato, A., Janssen, J., and Roshanbin, E. (2014). Burning a Graph as a Model of Social Contagion. Lecture Notes in Computer Science, 8882, 13-22. https://doi.org/10.1007/978-3-319-13123-8_2.

Bonato, A., Janssen, J., and Roshanbin, E. (2016). How To Burn a Graph. Internet Mathematics, 12(1-2), 85-100. https://doi.org/10.1080/15427951.2015.1103339.

Bonato, A., Janssen, J., and Roshanbin, E. (2015). Burning a Graph is Hard. https://doi.org/10.48550/arXiv.1511.06774

Bonato, A., and Nowakowski, R. J. (2011). The Game of Cops and Robbers on Graphs. American Mathematical Society. https://doi.org/10.1090/stml/061.

Finbow, S., King, A., Macgillivray, G., and Rizzi, R. (2007). The Firefifighter Problem For Graphs of Maximum Degree Three. Discrete Mathematics, 307, 2049-2105. https://doi.org/10.1016/j.disc.2005.12.053.

Finbow, S., and Macgillivray, G. (2019). The Firefighter Problem: A Survey of Results, Directions And Questions. Australasian Journal of Combinatorics, 43, 57-77.

Liu, H., Zhang, R., and Hu, X. (2019). Burning Number of Theta Graphs. Applied Mathematics and Computation, 361, 246-257. https://doi.org/10.1016/j.amc.2019.05.031.

Mitsche, D., Prałat, P., and Roshanbin, E. (2018). Burning Number of Graph Products. Theoretical Computer Science, 746, 124-135. https://doi.org/10.1016/j.tcs.2018.06.036.

Mitsche, D., Prałat, P., and Roshanbin, E. (2017). Burning Graphs-A Probabilistic Perspective, Arxiv :1505.03052. Graphs and Combinatorics, 33(2), 449-471. https://doi.org/10.1007/s00373-017-1768-5.

Roshanbin, E. (2016). Burning A Graph as a Model of Social Contagion [Phd Thesis]. Dalhousie University.

Sim, K. A., Tan, T. S., and Wong, K. B. (2018). On the Burning Number of Generalized Petersen Graphs. Bulletin of the Malaysian Mathematical Sciences Society, 41(3), 1657-1670. https://doi.org/10.1007/s40840-017-0585-6.

Downloads

Published

2023-03-17

How to Cite

Li, W. (2023). GRAPHS WITH THE BURNING NUMBERS EQUAL THREE. International Journal of Research -GRANTHAALAYAH, 11(2), 145–150. https://doi.org/10.29121/granthaalayah.v11.i2.2023.5057