GENETIC VARIABILITY FOR GRAIN NUTRIENTS CONTENT IN COASTAL RICE COLLECTIONS OF BANGLADESH

Authors

  • F Shahrin M S Student, Dept of Genetics and Plant Brededing, BSMRAU, Gazipur 1706, Bangladesh
  • P Roy M S Student, Dept of Genetics and Plant Breeding, BSMRAU, Gazipur 1706, Bangladesh
  • M S Raihan Professor, Dept of Genetics and Plant Breeding, BSMRAU, Gazipur 1706, Bangladesh
  • M M Haque Professor, Dept of Agronomy, BSMRAU, Gazipur 1706, Bangladesh https://orcid.org/0000-0001-6702-3539
  • M G Rasul Professor, Dept of Genetics and Plant Breeding, BSMRAU, Gazipur 1706, Bangladesh

DOI:

https://doi.org/10.29121/granthaalayah.v9.i11.2021.4400

Keywords:

Coastal Rice, Grain Nutrients, Nutrient Deficiency, Boxplot, Biofortification, Heatmap, Neibour Joining

Abstract [English]

Overcoming malnutrition through biofortification breeding in rice is aimed to assist nutritional food security in Bangladesh. So to select parents for nutritional improvement, estimation and exploitation of mineral nutrients reserves of rice grain and their variability assessment in different genotypes is essential. Eighty-five (85) T. aman rice genotypes collected from different coastal regions of Bangladesh were evaluated at the Advanced Plant Breeding laboratory, GPB of BSMRAU to estimate the grain nutrients content and to elucidate their genetic variability among the genotypes. Considerable significant variation (0.1% level of probability) was noted among the genotypes for studied different grain nutrient contents and yield per hill. The mean values of N, P, K, Ca, Mg, Na, Zn, Fe, Cu, Mn and grain yield/ hill were 10788.24 mg/kg, 804.85 mg/kg, 3798.58 mg/kg, 13795.29 mg/kg, 2778.87 mg/kg, 3771.17 mg/kg, 7.25 mg/kg, 5.01 mg/kg, 1.05 mg/kg, 1.90 mg/kg and 433.29 g, respectively. Box and whisker plots analysis were done to represent data graphically for better understanding. Histogram was used to present the frequency distribution of genotypes for N, P, K, Ca, Mg, Na, Zn, Fe, Cu, Mg and Grain yield/hill content in 85 diverged rice genotypes All the traits had equality in genotypic and phenotypic variances with high heritability and high genetic advance which indicated preponderance of additive gene effects for these traits. The genotype R080 (Chinigura) contained the highest content of grain P, Fe and Cu. The R030 (Mota Dhan), R040 (Dudh Kalam) and R019 (Chikon Dhan) were noted for the highest Ca, Mg and Na content, respectively. The maximum N and Zn content were observed in R029 (Dudh Kolom) and R075 (Gopal Bogh), respectively. R083 (Lal Dhan) was marked for the highest grain yield/ hill and K content. Genetic variability parameters, heat map analysis and neighbor joining clustering methods indicated these genotypes including R079 can be considered for biofortification program and used as parents for the improvement of those grain nutrients in rice breeding.

Downloads

Download data is not yet available.

References

Adeyeye, E. I., Arogundade L. A., Akintayo, E. T., Aisida O. A. and Alao, P. A. (2000). Calcium, zinc and phytate interrelationships in some foods of major consumption in Nigeria. Food Chemistry, 71(4), 435-441. Retrieved fromhttps://doi.org/10.1016/S0308-8146(00)00159-X DOI: https://doi.org/10.1016/S0308-8146(00)00159-X

Ahuja, U., Ahuja, S. C., Thakrar, R and Singh, R. K. (2008). Rice-a nutraceutical. Asian Agri-History, 12(2), 93-108. Retrieved from http://www.indiaenvironmentportal.org.in/files/Asian%20Agri-%20History.pdf

Anjum, F. M., Pasha, I, Bugti, M. A. and. Butt, M. S. (2007). Mineral composition of different rice varieties and their milling fractions. Pakistan Journal of Agricultural Sciences. 44(2), 332-336. Retrieved from https://pakjas.com.pk/papers/336.pdf

Anjum, K. I., and Hossain, M. A. (2019). Nutritional and cooking properties of some rice varieties in Noakhali region of Bangladesh. Res. Agric. Livest. Fish. 6 (2): 235-243. Retrieved from https://doi.org/10.3329/ralf.v6i2.43046 DOI: https://doi.org/10.3329/ralf.v6i2.43046

Anuradha, K, Agarwal, S., Batchu, A. K, Babu, A. P, Swamy B. P. M, Longva, T., Sarla, N. (2012a) Evaluating rice germplasm for iron and zinc concentration in brown rice and seed dimensions. J Geophys Res 4:19-25. Retrieved from https://www.researchgate.net/profile/Surender-Singh-2/post/How-to-do-analysis-of-the-endosperm-loading-of-iron-mineral-in-rice-genotypes/attachment/59d64e5779197b80779a7b61/AS%3A492388305076224%401494405928121/download/2754-3069-1-PB.pdf

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A and Wishart, D. S.. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Research, 44(W1), W147-W153. Retrieved from https://doi.org/10.1093/nar/gkw419 DOI: https://doi.org/10.1093/nar/gkw419

Barrett, B. A., Kidwell, K. K. and Fox, P. N. (1998). Comparison of AFLP and Pedigree-based Genetic Diversity Assessment Methods Using Wheat Cultivars from the Pacific Northwest. Crop Science, 38(5), 1271-1278. Retrieved from https://doi.org/10.2135/cropsci1998.0011183X003800050026x DOI: https://doi.org/10.2135/cropsci1998.0011183X003800050026x

Bashir, K., Takahashi, R. Nakanishi, H. and Nishizawa, N. K. (2013). The road to micronutrient biofortification of rice: progress and prospects. Frontiers in Plant Science, 4, 15. Retrieved from https://doi.org/10.3389/fpls.2013.00015 DOI: https://doi.org/10.3389/fpls.2013.00015

Burton, G. W and Vane, D. E. (1953). Estimating heritability in tall fescue (Festuca arundinacea) from replicated clonal material. Agronomy Journal, 45: 478-481. Retrieved from https://doi.org/10.2134/agronj1953.00021962004500100005x DOI: https://doi.org/10.2134/agronj1953.00021962004500100005x

Burton, G. W. (1952). Quantitative inheritance in grasses. In. Proceedings of the 6th International Grassland Congress, pp. 277-283, Ames, Iowa, USA.

Chaudhari, P. R., Tamrakar, N., Singh, L., Tandon, A. and Sharma, D. (2018). Rice nutritional and medicinal properties: A. Journal of Pharmacognosy and Phytochemistry, 7(2), 150-156. Retrieved from https://www.phytojournal.com/archives/2018/vol7issue2/PartC/7-1-256-103.pdf

Chinoy, A., Mughal, M. Z. and Padidela, R. (2019). Metabolic bone disease of prematurity: causes, recognition, prevention, treatment and long-term consequences. Archives of Disease in Childhood-Fetal and Neonatal Edition, 104(5), 560-566. Retrieved from https://doi.org/10.1136/archdischild-2018-316330 DOI: https://doi.org/10.1136/archdischild-2018-316330

Cousens, G. (2017). Why do we Need Nitrogen. Dr. Cousens'Blog. Retrieved from http://treeoflifecenterus.com/why-do-we-need-nitrogen/

Das, S. and Gulshan, J. (2017). Different forms of malnutrition among under five children in Bangladesh: a cross sectional study on prevalence and determinants. BMC Nutrrition, 3, 1. Retrieved from https://doi.org/10.1186/s40795-016-0122-2 DOI: https://doi.org/10.1186/s40795-016-0122-2

Depar, N., Rajpar, I., Memon, M. Y. and Imtiaz, M. (2011). Mineral nutrient densities in some domestic and exotic rice genotypes. Pakistan Journal of Agriculture: Agricultural Engineering, Veterinary Sciences (Pakistan). 27(2): 134-142. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=PK2012000623

Eggum, B. O. (1969). Evaluation of protein quality and the development of screening technique. In New approaches to breeding for improved plant protein. Vienna IAEA. 125-135. Retrieved from https://agris.fao.org/agris-search/search.do?recordID=US201301163824

Eggum, B. O. (1977). Nutritional aspects of cereal protein. In A. Muhammad R. Aksel and R. C. Von Boustel, eds. Genetic diversity in plants. New York, Plenum press, 349369. Retrieved from https://doi.org/10.1007/978-1-4684-2886-5_32 DOI: https://doi.org/10.1007/978-1-4684-2886-5_32

Eggum, B. O. (1979). The nutritional value of rice in comparison with other cereals. In proceedings, workshop on chemical aspects of rice grain quality. Los Bunos, Laguna, The Philippines IRRI, 91-111.

Gearing, M. E. (2015). Good as gold: Can golden rice and other biofortified crops prevent malnutrition? Science in the News, Harvard University.

Graham, R. D., Ross, M. W., Saunders, D. A., Ortiz‐ Monasterio, I., Bouis, H. E., Bonierbale, M., Haan, S de., Burgos, G., Thiele, G., Liria, R., Meisner, C. A., Beebe, S. E., Potts, M J., Kadian M., Hobbs, P. R., Gupta, R. K. and Twomlow, S. (2007). Nutritious subsistence food systems. Advances in Agronomy, 92, 1-74. Retrieved from https://doi.org/10.1016/S0065-2113(04)92001-9 DOI: https://doi.org/10.1016/S0065-2113(04)92001-9

Haas, J. D., Beard, J. L., Murray-Kolb, L. E., Del Mundo, A. M., Felix, A and Gregorio. G. B. (2005). Iron-biofortified rice improves the iron stores of nonanemic Filipino women. The Journal of Nutrition, 135(12), 2823-2830. Retrieved from https://doi.org/10.1093/jn/135.12.2823 DOI: https://doi.org/10.1093/jn/135.12.2823

Imtiaz, M., Khan, P., Babar, H., Depar, N., Siddiqui, S. H., Memon, M. Y., Aslam, M., Shah, K. H. and Naqvi, M. H. (2005). Mineral dietary status of existing domestic wheat genotypes. The Nucleus, 42 (3-4): 213.

Johnson, A. A., Kyriacou, B., Callahan, D. L., Carruthers, L., Stangoulis, J., Lombi, E. and Tester, M. (2011). Constitutive overexpression of the OsNAS gene family reveals single-gene strategies for effective iron-and zinc-biofortification of rice endosperm. PloS one, 6(9). Retrieved from https://doi.org/10.1371/journal.pone.0024476 DOI: https://doi.org/10.1371/journal.pone.0024476

Johonson, H. W., H. F. Robinson and R. E. Comostock. (1955). Genotypic and phenotypic correlations in soybeans and their implication in selection. Agronomy Journal. 47: 477- 483. Retrieved from https://doi.org/10.2134/agronj1955.00021962004700100008x DOI: https://doi.org/10.2134/agronj1955.00021962004700100008x

Khan, A. and Gotter, A. (2018). Hypocalcemia (Calcium Deficiency Disease). Healthline Retrieved from https://www.healthline.com/health/calcium-deficiency-disease

Mahender, A., Anandan, A., Pradhan S. K. and Pandit, E. (2016). Rice grain nutritional traits and their enhancement using relevant genes and QTLs through advanced approaches. SpringerPlus 5, 2086. Retrieved from https://doi.org/10.1186/s40064-016-3744-6 DOI: https://doi.org/10.1186/s40064-016-3744-6

Mamun, A. A., Sarker P. R. and Noor, M. N. A. (2019). Influence of irrigation and gypsum on wheat cultivation in saline soil. Research in Agriculture Livestock and Fisheries, 6(1): 01-10. Retrieved from https://doi.org/10.3329/ralf.v6i1.41380 DOI: https://doi.org/10.3329/ralf.v6i1.41380

Martel, J. (2017). Low Blood Sodium (Hyponatremia). Healthline. Retrieved from https://www.healthline.com/health/hyponatremia#symptoms

Martinez, C.P., Borrero, J. , Taboada, R., Viana, J. L., Neves, P., Narvaez, L., Puldon, V., Adames A. and Varga, A. (2010). Rice cultivars with enhanced iron and zinc content to improve human nutrition. 28th International Rice Research Conference, Hanoi, Vietnam, 8-12 November 2010. OP10: Quality Grain, Health and Nutrition.

Matin, A., Siddiquee, M. A., Akther, S., Alam, M. K. and Ali, M. S. (2017). A comparative study on chemical and cooking properties of abiotic stress tolerant and other high yielding rice varieties in Bangladesh. Bangladesh Journal of Agricultural Research, 42(4): 673-679. Retrieved from https://doi.org/10.3329/bjar.v42i4.35794 DOI: https://doi.org/10.3329/bjar.v42i4.35794

Mbatchou, V. C. and Dawda, S. (2013). The nutritional composition of four rice varieties grown and used in different food preparations in Kassena-Nankana district Ghana. Int J. Res. Chem. Environ, 3, 308-315. Retrieved from https://www.researchgate.net/profile/Valentine-Mbatchou/publication/312465733_The_nutritional_composition_of_four_rice_varieties_grown_and_used_in_different_food_preparations_in_Kassena-Nankana_district/links/5ab3954d458515ecebefeb83/The-nutritional-composition-of-four-rice-varieties-grown-and-used-in-different-food-preparations-in-Kassena-Nankana-district.pdf

Muhammad, Z., Farooq, A., Shaukat, A. and Tahira, I. (2012). Proximate composition and minerals profile of selected rice (Oryza sativa L.) varieties of Pakistan. Asian Journal of Chemistry, 24(1), 417-421. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20113364476

Nagesh, Ravindrababu, V., Usharani, G. and Reddy, T. D. (2012). Grain iron and zinc association studies in rice (Oryza sativa L.) F1 progenies. Arch. Appl. Sci. Res. 4 (1): 696-702. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20123110455

Prasad, R. (2009). Ferti-fortification of grains-an easy option to alleviate malnutrition of some micronutrients in human beings. Indian Journal of Fertilisers, 5(12), 129-133. Retrieved from https://www.cabdirect.org/cabdirect/abstract/20103025275

Radcliffe, S. (2016). Mineral Deficiency. Healthline. Retrieved from https://www.healthline.com/health/mineral-deficiency#1

Ravindra Babu, V. (2013). Importance and advantages of rice biofortification with iron and zinc. An Open Access Journal published by ICRISAT. SAT eJ.,11:1-6. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.670.3648&rep=rep1&type=pdf

Reddy, M., Turaidar, V., Krupa, K. N., Anantapur, R., Bharani, S. S. and Dalawai, N. (2018). Enhancement of iron and zinc in rice grain through biofortification approach. International Journal of Current Microbiology and Applied Science. 7: 628-637.

Shozib, H. B., Hossain, M. M., Jahan, S., Alam, M. S., Das, S. C., Alam, S., Amin, R. B., Hasan, M. M., Malo, R., Islam, M. R., Shekhar, H. U. and Siddiquee, M. A. (2017). Study of biochemical and cooking quality traits of major rice varieties of Bangladesh. Malaysian Applied Biology Journal, 46(4): 55-62. Retrieved from https://www.researchgate.net/profile/Habibul-Shozib/publication/322820551_STUDY_OF_BIOCHEMICAL_AND_COOKING_QUALITY_TRAITS_OF_MAJOR_RICE_VARIETIES_OF_BANGLADESH/links/5a717e8b458515015e646e4a/STUDY-OF-BIOCHEMICAL-AND-COOKING-QUALITY-TRAITS-OF-MAJOR-RICE-VARIETIES-OF-BANGLADESH.pdf

Souci, S. W., Fuchmann, W. and Kraut, H. (1987). Food composition and nutrition tables, 3rd rev. ed. Stuttgarti, Wissen Schaftloche Verlagsgeseil schaft.

Suzuki, S., Djuangshi, N., Hyodo, K. and Soemarwoto, O. (1980). Cadmium, copper, and zinc in rice produced in Java. Archives of Environmental Contamination and Toxicology, 9(4), 437-449. Retrieved from https://doi.org/10.1007/BF01055296 DOI: https://doi.org/10.1007/BF01055296

Thongbam, P. D., Tarentoshi, P., Raychaudhury, M., Durai, A., Das, S. P., Ramesh, T., Patiram, K. T., Ramya, K. T., Abdul, F. R. and Ngachan, S. V. (2012). Studies on grain and food quality traits of some indigenous rice cultivars of Northeastern Hill Region of India. Journal of Agricultural Science, 4(3): 1-12. Retrieved from https://doi.org/10.5539/jas.v4n3p259 DOI: https://doi.org/10.5539/jas.v4n3p259

Wazir, S. M., and Ghobrial, I. (2017). Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. Journal of community hospital internal medicine perspectives, 7(4), 265-268. Retrieved from https://doi.org/10.1080/20009666.2017.1351289 DOI: https://doi.org/10.1080/20009666.2017.1351289

Welch, R. M. and Graham, R. D. (1999). A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. Field Crops Research, 60(1-2), 1-10. Retrieved from https://doi.org/10.1016/S0378-4290(98)00129-4 DOI: https://doi.org/10.1016/S0378-4290(98)00129-4

Welch, R. M. and Graham, R. D. (2004). Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany, 55(396), 353-364. Retrieved from https://doi.org/10.1093/jxb/erh064 DOI: https://doi.org/10.1093/jxb/erh064

World Food Programme. (2015). Types of malnutrition.

Zeng, Y. W., Liu, J. F., Wang, L. X., Shen, S. Q., Li, Z. C., Wang, X. K., Wen, G. S. and Yang, Z. Y. (2004). Analysis on mineral element contents in associated with varietal type in core collection of Yunnan rice. Rice Sci, 11(3), 106-112

Downloads

Published

2021-12-07

How to Cite

Shahrin, F., Roy, P., Raihan, M. S., Haque, M. M., & Rasul, M. G. (2021). GENETIC VARIABILITY FOR GRAIN NUTRIENTS CONTENT IN COASTAL RICE COLLECTIONS OF BANGLADESH. International Journal of Research -GRANTHAALAYAH, 9(11), 182–201. https://doi.org/10.29121/granthaalayah.v9.i11.2021.4400