MODELING OPEN AIR AND SHADE DRYING OF CORYMBIA CITRIODORA LEAVES FOR THE ESSENTIAL OIL PRODUCTION

Authors

  • Hubert Makomo Phd Program, Faculty Of Sciences And Techniques BP 69 University Marien Ngouabi, Brazzaville-Congo https://orcid.org/0000-0001-9557-3925
  • Jean Bruno Bassiloua Phd Program, Faculty Of Sciences And Techniques BP 69 University Marien Ngouabi, Brazzaville-Congo, Higher School of Technology « Les Cataractes » (EPrES) BP 389 Brazzaville-Congo
  • Fergie Romance Bivoumboukoulou T2A, PhD program, Faculty of Sciences and Techniques, B.P.: 69 University Marien Ngouabi, Brazzaville-Congo
  • Thomas Silou Phd Program, Faculty of Sciences and Techniques BP 69 University Marien Ngouabi, Brazzaville-Congo, Higher School of Technology « Les Cataractes » (EPrES) BP 389 Brazzaville-Congo

DOI:

https://doi.org/10.29121/granthaalayah.v9.i11.2021.4322

Keywords:

Shade Drying, Kinetics, Corymbia Citriodora, Congo-Brazzaville

Abstract [English]

In the literature, the drying mechanism were generally analyzed in terms of effective diffusivity through the pseudo first order diffusion model. This process was revisited through the modified Peleg model, assuming the drying as a moisture desorption versus drying time. The leaves of Corymbia citriodora acclimatized in the Congo Brazzaville “Plateau des Cataractes” were dried in open air and under shade thanks to a domestic scale of essential oil production. One obtains  following model parameters: kinetic constant k1: 0.8555 - 2.1355 d.(g/g)-1, extraction capacity constant K2: 1.5255 - 1.8733 (g/g)-1; end equilibrium moisture X = 0.53 - 0.66 g/g. and first order  drying kinetic constant k = K2/k1: 1.71 - 1.78 d-1. Pseudo first order diffusion model fits experimental data with k = 0.368 - 0.587 d-1 and t1/2 = 1,18 - 1,88 d.. These results needed for the optimization of proccess and sizing equipments came from a fast graphic data processing, with low computer inputs.

Downloads

Download data is not yet available.

References

Anonymous, (2010) Développement des filières de commercialisation d'huiles essentielles d'Eucalyptus citriodora, produit forestier non ligneux à forte valeur ajoutée, par les communautés villageoises du Congo, projet OIBT PD364/05 rév.4(1). Ministère de l'Economie Forestière.

Bucic-Kojic A., Mirela P., Srecko T., Mate B., and Darko V. (2007) Study of Solid-Liquid Extraction Kinetics of Total Polyphenols from Grape Seeds, Journal of Food Engineering, 81. 236-242. Retrieved from https://doi.org/10.1016/j.jfoodeng.2006.10.027 DOI: https://doi.org/10.1016/j.jfoodeng.2006.10.027

Crank J. (1975) The Mathematics of Diffusion. Oxford University Press, Oxford.

Hill K.D. & Johnson LAS. (1995) Espèces du Genre Corymbia, Telopea 6(2-3), 214. Retrieved from https://doi.org/10.7751/telopea19953017 DOI: https://doi.org/10.7751/telopea19953017

Nguyen T.V.L., Nguyen M.D., Nguyen D.C., Bach L.G. and Lam T.D. (2019) Model for Thin Layer Drying of Lemongrass (Cymbopogon citratus) by Hot Air, Processes, 7, 21. Retrieved from https://doi.org/10.3390/pr7010021 DOI: https://doi.org/10.3390/pr7010021

Peleg M. (1988) An Empirical Model For Description Of Moisture Sorption Curves. Journal of Food Science, 53 (4), 1216- 1219. Retrieved from https://doi.org/10.1111/j.1365-2621.1988.tb13565.x DOI: https://doi.org/10.1111/j.1365-2621.1988.tb13565.x

Shafaeï S.M., Masoumi A.A., Roshan H. (2016) Analysis of Water Adsorption of Bean Etchickpea During Soaking Using Peleg Model, Journal of the Saudi Society of Agriculture Sciences, 15, 135 - 144. Retrieved from https://doi.org/10.1016/j.jssas.2014.08.003 DOI: https://doi.org/10.1016/j.jssas.2014.08.003

Silou T. (2019) Corymbia citriodora acclimatée au Congo : source de citronellal (90%) Editions Universitaires Européennes, Saarbrünken, Allemagne .

Silou T., Mapola G., Makany R.A., Loumouamou A.N., Malanda M. and Chalchat J.C. (2009) Model of Steam and Water Extraction of Essential Oil of Eucalyptus Citriodora Using a Complete 2n Factorial Plan, International Journal of Food Engineering, 5(4), Article 9. Retrieved from https://doi.org/10.2202/1556-3758.1442 DOI: https://doi.org/10.2202/1556-3758.1442

Silou T., Loufouandi A.P., Kama Niamayoua R., Mapola G., Matondo R., Figuérédo G., Chalard P. (2013) Adaptation in Congo Brazzaville of Eucalyptus Citriodora from Australia. Tree-to-tree Yield and Composition VariabilitY, African Journal of Agricultural Research, 8(25), 3259-3267, Retrieved from DOI : 10.5897/AJAR09.518.

Silou T., Loumouamou A.N., Loukakou E., Chalchat J.C. and Figuérédo G. (2009) Intra And Interspecific Variations Of Yield And Chemical Composition Of Essential Oils From Five Eucalyptus Species Growing In The Congo- Brazzaville. Corymbia Subgenus J. Essent. Oil Res., 21, 1-9. Retrieved from https://doi.org/10.1080/10412905.2009.9700149 DOI: https://doi.org/10.1080/10412905.2009.9700149

Silou T., Taty-Loumbou F., Chalchat J.C. (2002) Etude de l'Effet du Séchage Solaire sur le Rendement et la Composition des Huiles Essentielles des Feuilles de Eucalyptus Citriodora Annales d'Expertises Chimiques et Toxicologiques, 95 (960), 287 -3001. Retrieved from https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14875330

Downloads

Published

2021-11-30

How to Cite

Makomo, H., Bassiloua, J. B., Bivoumboukoulou, F. R., & Silou, T. (2021). MODELING OPEN AIR AND SHADE DRYING OF CORYMBIA CITRIODORA LEAVES FOR THE ESSENTIAL OIL PRODUCTION. International Journal of Research -GRANTHAALAYAH, 9(11), 15–22. https://doi.org/10.29121/granthaalayah.v9.i11.2021.4322