TEMPERATURE DEPENDENCE OF CONDUCTIVITY OF UREASE DOPED POLYPYRROLE MATERIAL

Authors

  • Munish Pandey Department Of Physics, K.M.Agrawal College, Kalyan
  • Richa Badlani Department Of Physics R.K.T. College, UNR, India

DOI:

https://doi.org/10.29121/granthaalayah.v9.i6.2021.3993

Keywords:

Polypyrrole, Urease, Composites, Conductivity

Abstract [English]

In polymerization of was carried out in the presence of to synthesize – composites by chemical oxidation method. The / have been synthesized with various compositions (10, 15, 20, 25 and 30 ) of in in aquas medium at room temperature. The – composites were characterized by infrared spectroscopy (IR). The d.c. conductivity was studied in the temperature range from 40–100°C. The dimensions of in the matrix have a greater influence on the observed conductivity values.

Downloads

Download data is not yet available.

References

Adeloju, S. B., Shaw, S. J. & Wallace, G. G. (1996). Polypyrrole-based amperometric flow injection biosensor for urea. Analytica Chimica Acta 323(1-3), 107–113. Retrieved from https://dx.doi.org/10.1016/0003-2670(95)00562-5 10.1016/0003-2670(95)00562-5 DOI: https://doi.org/10.1016/0003-2670(95)00562-5

Armes, S. P. (1987). Optimum reaction conditions for the polymerization of pyrrole by iron(III) chloride in aqueous solution. Synthetic Metals 20(3), 365–371. Retrieved from https://dx.doi.org/10.1016/0379-6779(87)90833-2 10.1016/0379-6779(87)90833-2 DOI: https://doi.org/10.1016/0379-6779(87)90833-2

Bélanger, D., Nadreau, J. & Fortier, G. (1989). Electrochemistry of the polypyrrole glucose oxidase electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 274(1-2), 143–155. Retrieved from https://dx.doi.org/10.1016/0022-0728(89)87036-6 10.1016/0022-0728(89)87036-6 DOI: https://doi.org/10.1016/0022-0728(89)87036-6

Chao, T. H. & March, J. (1988). A study of polypyrrole synthesized with oxidative transition metal ions. Journal of Polymer Science Part A: Polymer Chemistry 26(3), 743–753. Retrieved from https://dx.doi.org/10.1002/pola.1988.080260306 10.1002/pola.1988.080260306 DOI: https://doi.org/10.1002/pola.1988.080260306

Gerard, M., Chaubey, A. A. & Malhotra, B. (2002). Applications Of Conducting Polymer To Biosensors. Biosensors And Bioelectronics 17, 345–359. DOI: https://doi.org/10.1016/S0956-5663(01)00312-8

Hof, G., Vervoorn, M.D., Lenaers, P.J. & Tamminga, S. (1997). Milk Urea Nitrogen as a Tool to Monitor the Protein Nutrition of Dairy Cows. Journal of Dairy Science 80(12), 3333–3340. Retrieved from https://dx.doi.org/10.3168/jds.s0022-0302(97)76309-4 10.3168/jds.s0022-0302(97)76309-4 DOI: https://doi.org/10.3168/jds.S0022-0302(97)76309-4

Kaneto, K. & Kaneko, M. (2002). Handbook Of Polymer In Electronics. In Rapra Technology Ltd ( B. D. Malhotra & 255. Shawbury , Eds. ).

Komaba, S., Seyama, M., Momma, T. & Osaka, T. (1997). Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole. Electrochimica Acta 42(3), 383–388. Retrieved from https://dx.doi.org/10.1016/s0013-4686(96)00226-5 10.1016/s0013-4686(96)00226-5 DOI: https://doi.org/10.1016/S0013-4686(96)00226-5

Kuwabata, S. & Tomiyori, M. (2002). Rechargeable Lithium Battery Cells Fabricated Using Poly(methyl methacrylate) Gel Electrolyte and Composite of V[sub 2]O[sub 5] and Polypyrrole. Journal of The Electrochemical Society 149(8), A988. Retrieved from https://dx.doi.org/10.1149/1.1487834 10.1149/1.1487834 DOI: https://doi.org/10.1149/1.1487834

Lindsey, S. E. & Street, G. B. (1984). Conductive Composites From Poly (Vinyl Alcohol) And Polypyrrole. Synthetic Metals. 85(1), 67–69. DOI: https://doi.org/10.1016/0379-6779(84)90080-8

Machida, S., Miyata, S. & Techagumpuch, A. (1989). Chemical synthesis of highly electrically conductive polypyrrole. Synthetic Metals 31(3), 311–318. Retrieved from https://dx.doi.org/10.1016/0379-6779(89)90798-4 10.1016/0379-6779(89)90798-4 DOI: https://doi.org/10.1016/0379-6779(89)90798-4

Ouyang, M. & Chance, C. M. (1998). Conductive polymer composites prepared by polypyrrole-coated poly(vinyl chloride) powder: relationship between conductivity and surface morphology. Polymer 39(10), 1857–1862. Retrieved from https://dx.doi.org/10.1016/s0032-3861(97)00308-x 10.1016/s0032-3861(97)00308-x DOI: https://doi.org/10.1016/S0032-3861(97)00308-X

Polymer Chemistry And Physics Of Modern Materials By J.M. .

Reis Lima, M. J., Fernandes, S. M. V. & Rangel, A. O. S. S. (2004). Enzymatic Determination of Urea in Milk by Sequential Injection with Spectrophotometric and Conductometric Detection. Journal of Agricultural and Food Chemistry 52(23), 6887–6890. Retrieved from https://dx.doi.org/10.1021/jf0488312 10.1021/jf0488312 DOI: https://doi.org/10.1021/jf0488312

Ruangchuay, L., Sirivat, A. & Schwank, J. (2004). Synthetic Metals. 140. DOI: https://doi.org/10.1016/S0379-6779(02)01319-X

Schuhmann, W., Lammert, R., Uhe, B. & Schmidt, H.-L. (1990). Polypyrrole, a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors. Sensors and Actuators B: Chemical 1(1-6), 537–541. Retrieved from https://dx.doi.org/10.1016/0925-4005(90)80268-5 10.1016/0925-4005(90)80268-5 DOI: https://doi.org/10.1016/0925-4005(90)80268-5

Sharma, A. L., Gerard, M., Singhal, R., Malhotra, B. D. & Annapoorni, S. (2001). Synthesis and Characterization of Fluoro-Substituted Polyaniline. Applied Biochemistry and Biotechnology 96(1-3), 155–166. Retrieved from https://dx.doi.org/10.1385/abab:96:1-3:155 10.1385/abab:96:1-3:155 DOI: https://doi.org/10.1385/ABAB:96:1-3:155

Slater, J. M. A. & Watt, E. (1989). Use Of The Conducting Polymer, Polypyrrole, As A Sensor. Anal Proc 26, 397–399.

Yamato, H., Koshiba, T., Ohwa, M., Wernet, W. & Matsumura, M. (1997). A new method for dispersing palladium microparticles in conducting polymer films and its application to biosensors. Synthetic Metals 87(3), 231–236. Retrieved from https://dx.doi.org/10.1016/s0379-6779(97)80114-2 10.1016/s0379-6779(97)80114-2 DOI: https://doi.org/10.1016/S0379-6779(97)80114-2

Published

2021-06-30

How to Cite

Pandey, M., & Badlani, R. (2021). TEMPERATURE DEPENDENCE OF CONDUCTIVITY OF UREASE DOPED POLYPYRROLE MATERIAL. International Journal of Research -GRANTHAALAYAH, 9(6), 85–90. https://doi.org/10.29121/granthaalayah.v9.i6.2021.3993