CORRELATION BETWEEN MICROSTRUCTURAL AND CORROSION RESISTANCE OF BORON-MODIFIED DUPLEX STAINLESS STEEL PROCESSED BY SPRAY-FORMING
Keywords:
Boron-Modified Duplex Stainless Steel, Spray-Forming, SEM-FEG, Vickers Hardness, XRD, Rama Spectroscopy, Corrosion ResistanceAbstract [English]
In this work was investigated the duplex stainless steel modified by boron by spray-forming, in order to characterize the using different techniques, optical microscopy, SEM-FEG, X-ray diffraction, Rama spectroscopy and hardness (VH) and Thermo-Calc software, with goal of determining the corrosion resistance. The corrosion resistance test was performed in aerated solution of 0.1 M, immersed in different aggressive media electrolytes, alkaline and acidic mediums. As result through the EDS technique was verified that in the phase the Cr element predominates, but in the phase the Fe and Ni elements prevail. XRD spectra shown different meta-stable phases and mainly the (FeCr)2B phase, the percentage of the and phases are similar. Besides, the measurement was around 460 HV. Furthermore, impedance plots at different electrolytes had linear behavior, which their polarization resistances are extremely high in all solutions. However, the potential of corrosion whose magnitude is small, also the rates were close to zero. Consequently, the corrosion resistance in all studied solutions were extremely high and it can be attributed due to presence of the (FeCr)2B phase, meta-stables phases and similar proportion of the three phases present. This alloy can be successfully used in the chemical, oil and gas industries and petrochemical process plants.
Downloads
References
Aribo, S., Barker, R., Hu, X. & Neville, A. (2013). Erosion–corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution. Wear 302(1-2), 1602–1608. Retrieved from https://dx.doi.org/10.1016/j.wear.2012.12.007 10.1016/j.wear.2012.12.007
Arun, D., Devendranath Ramkumar, K. & Vimala, R. (2019). Multi-pass arc welding techniques of 12 mm thick super-duplex stainless steel. Journal of Materials Processing Technology 271, 126–143. Retrieved from https://dx.doi.org/10.1016/j.jmatprotec.2019.03.031 10.1016/j.jmatprotec.2019.03.031
Bastidas, J.M, Polo, J.L, Torres, C.L & Cano, E. (2001). A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corrosion Science 43(2), 269–281. Retrieved from https://dx.doi.org/10.1016/s0010-938x(00)00082-2 10.1016/s0010-938x(00)00082-2
Bastos, I. N., Tavares, S. S.M., Dalard, F. & Nogueira, R. P. (2007). Effect of microstructure on corrosion behavior of superduplex stainless steel at critical environment conditions. Scripta Materialia 57(10), 913–916. Retrieved from https://dx.doi.org/10.1016/j.scriptamat.2007.07.037 10.1016/j.scriptamat.2007.07.037
Bettini, E., Kivisäkk, U., Leygraf, C. & Pan, J. (2013). Study of corrosion behavior of a 22% Cr duplex stainless steel: Influence of nano-sized chromium nitrides and exposure temperature. Electrochimica Acta 113, 280–289. Retrieved from https://dx.doi.org/10.1016/j.electacta.2013.09.056 10.1016/j.electacta.2013.09.056
Chai, G. & Kangas, P. (2019). Hyper-Duplex Stainless Steels. Hyper-Duplex Stainless Steels . Retrieved from Https://Www.Materials.Sandvik/Contentassets/2fb9a78a95e54cfba303361e04151a68/Sav0049_Whitepaper_Hyperduplex_150606.Pdf.2017.Accessed11Nobember
Chail, G. & Kangas, P. (2016). Super and hyper duplex stainless steels: structures, properties and applications. Procedia Structural Integrity 2, 1755–1762. Retrieved from https://dx.doi.org/10.1016/j.prostr.2016.06.221 10.1016/j.prostr.2016.06.221
Charles And, J. & Bernhardsson, S. (1991). Super Duplex Stainless Steels: Structure And Properties. In Duplex Stainless Steels’91 ( V.1. Ed: Charles & J. , Eds. ). (pp. 3-48)
del Coz Díaz, J.J., Menéndez Rodríguez, P., García Nieto, P.J. & Castro-Fresno, D. (2010). Comparative analysis of TIG welding distortions between austenitic and duplex stainless steels by FEM. Applied Thermal Engineering 30(16), 2448–2459. Retrieved from https://dx.doi.org/10.1016/j.applthermaleng.2010.06.016 10.1016/j.applthermaleng.2010.06.016
Deng, B., Wang, Z., Jiang, Y., Sun, T., Xu, J. & Li, J. (2009). Effect Of Thermal Cycles On The Corrosion And Mechanical Properties Of Uns S31803 Duplex Stainless Steel. Corrosion Science 51, 2969–2975.
Emami, S., Saeid, T. & Khosroshahi, R. A. (2018). Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel. Journal of Alloys and Compounds 739, 678–689. Retrieved from https://dx.doi.org/10.1016/j.jallcom.2017.12.310 10.1016/j.jallcom.2017.12.310
Hussain, E. & Husain, A. (2005). Erosion — corrosion of duplex stainless steel under Kuwait marine condition. Desalination 183(1-3), 227–234. Retrieved from https://dx.doi.org/10.1016/j.desal.2005.02.051 10.1016/j.desal.2005.02.051
Kashiwar, A., Vennela, N. P., Kamath, S.L. & Khatirkar, R.K. (2012). Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel. Materials Characterization 74, 55–63. Retrieved from https://dx.doi.org/10.1016/j.matchar.2012.09.008 10.1016/j.matchar.2012.09.008
Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T. & Yang, K. (2016). Microbiologically Influenced Corrosion Of 2707 Hyper-Duplex Stainless Steel By Marine Pseudomonas Aeruginosa Biofilm. Scientific Reports .
Martins, M. & Casteletti, L. C. (2005). Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure. Materials Characterization 55(3), 225–233. Retrieved from https://dx.doi.org/10.1016/j.matchar.2005.05.008 10.1016/j.matchar.2005.05.008
Martins, M. (2006). Microstructural-Mechanical Characterization And Corrosion Resistance Of Astm A890 / A890m Grade 6a Super Duplex Stainless, Doctoral Thesis, Universidade De São Paulo-Br, Interunidades Eesc-Ifsc-Iqsc, Steel. Microstructural-Mechanical Characterization And Corrosion Resistance Of Astm A890 / A890m Grade 6a Super Duplex Stainless .
Meng, H., Hu, X. & Neville, A. (2007). A systematic erosion–corrosion study of two stainless steels in marine conditions via experimental design. Wear 263(1-6), 355–362. Retrieved from https://dx.doi.org/10.1016/j.wear.2006.12.007 10.1016/j.wear.2006.12.007
Mironova-Ulmane, N., Kuzmin, A., Sildos, I. & Pärs, M. (2011). Polarisation dependent Raman study of single-crystal nickel oxide. Open Physics 9(4). Retrieved from https://dx.doi.org/10.2478/s11534-010-0130-9 10.2478/s11534-010-0130-9
Pehkonen, S. O. & Yuan, S. (2019). Tailored Thin Coatings For Corrosion Inhibition Using A Molecular Approach. Interface Science And Technology 23.
Ran, Q., Liu, Q., Xu, Y., Xu, W., Li, J., Xiao, X., Hu, J. & Jiang, L. (2015). Nitrogen-Induced Selective High-Temperature Internal Oxidation Behavior In Duplex Stainless Steels. Nitrogen-Induced Selective High-Temperature Internal Oxidation Behavior In Duplex Stainless Steels 19cr-10mn-0.3ni-Xn 98, 737–747.
Sánchez-Tovar, R., Leiva-García, R. & García-Antón, J. (2015). Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques. Thin Solid Films 576, 1–10. Retrieved from https://dx.doi.org/10.1016/j.tsf.2014.12.024 10.1016/j.tsf.2014.12.024
Sharafi, S. (1993). Microstructure Of Super-Duplex Stainless Steels. Doctor Of Philosophy. St. Edmund College, The University Of Cambridge. Microstructure Of Super-Duplex Stainless Steels. Doctor Of Philosophy . Retrieved from Https://Doi.Org/10.17863/Cam.14216
Smuk, O. (2004). Microstructure And Properties Of Modern P/M Super Duplex Stainless Steels. Doctoral Thesis. Dpto Of Materials Science And Engineering, Royal Institute Of Technology. Microstructure And Properties Of Modern P/M Super Duplex Stainless Steels. Doctoral Thesis. Dpto Of Materials Science And Engineering .
Software, T.-C. (2017). Stockholm. Stockholm, Sweden:
Souza, E. C., Rossitti, S. M. & Rollo, J. M.D.A. (2010). Influence of chloride ion concentration and temperature on the electrochemical properties of passive films formed on a superduplex stainless steel. Materials Characterization 61(2), 240–244. Retrieved from https://dx.doi.org/10.1016/j.matchar.2009.12.004 10.1016/j.matchar.2009.12.004
Soyama, J., Lopes, T. P., Zepon, G., Kiminami, C. S., Botta, W. J. & Bolfarini, C. (2019). Wear Resistant Duplex Stainless Steels Produced by Spray Forming. Metals and Materials International 25(2), 456–464. Retrieved from https://dx.doi.org/10.1007/s12540-018-0202-8 10.1007/s12540-018-0202-8
(1999). Standard Practice For Castings, Iron-Chromium-Nickel-Molybdenum Corrosion Resistant, Duplex (Austenitic/Ferritic) For General Application. In American Society For Testing And Materials - Astm A890/A890m-91. (pp. 556-569) Annual Book Of Astm Standards
Toshev, Y., Kostadinov, K. & K. (2006). Protective Coating Of Zinc And Zinc Alloys For Industrial Applications. 4m 2006 - Second International Conference On Multi-Material Micro Manufacture 397–326.
Wang, S., Ma, Q. & Li, Y. (2011). Characterization Of Microstructure, Mechanical Properties And Corrosion Resistance Of Dissimilar Welded Joint Between 2205 Duplex Stainless Steel And 16mnr. Materials And Design 32, 831–837.
Xu, Y., Jin, Q., Li, J., Xiao, X. & Zhang, X. (2012). Oxidation Induced Phase Transformation Of Duplex Stainless Steel 25cr-10mn-2ni. Corrosion Science 55, 233–237.
Zanotto, F., Grassi, V., Merlin, M., Balbo, A. & Zucchi, F. (2015). Effect of brief heat treatments performed between 650 and 850°C on corrosion behaviour of a lean duplex stainless steel. Corrosion Science 94, 38–47. Retrieved from https://dx.doi.org/10.1016/j.corsci.2015.01.035 10.1016/j.corsci.2015.01.035
Zepon, G., Ellendt, N., Uhlenwinkel, V. & Bolfarini, C. (2016). Solidification Sequence of Spray-Formed Steels. Metallurgical and Materials Transactions A 47(2), 842–851. Retrieved from https://dx.doi.org/10.1007/s11661-015-3253-1 10.1007/s11661-015-3253-1
Aribo, S., Barker, R., Hu, X. & Neville, A. (2013). Erosion–corrosion behaviour of lean duplex stainless steels in 3.5% NaCl solution. Wear 302(1-2), 1602–1608. Retrieved from https://dx.doi.org/10.1016/j.wear.2012.12.007 10.1016/j.wear.2012.12.007
Arun, D., Devendranath Ramkumar, K. & Vimala, R. (2019). Multi-pass arc welding techniques of 12 mm thick super-duplex stainless steel. Journal of Materials Processing Technology 271, 126–143. Retrieved from https://dx.doi.org/10.1016/j.jmatprotec.2019.03.031 10.1016/j.jmatprotec.2019.03.031
Bastidas, J.M, Polo, J.L, Torres, C.L & Cano, E. (2001). A study on the stability of AISI 316L stainless steel pitting corrosion through its transfer function. Corrosion Science 43(2), 269–281. Retrieved from https://dx.doi.org/10.1016/s0010-938x(00)00082-2 10.1016/s0010-938x(00)00082-2
Bastos, I. N., Tavares, S. S.M., Dalard, F. & Nogueira, R. P. (2007). Effect of microstructure on corrosion behavior of superduplex stainless steel at critical environment conditions. Scripta Materialia 57(10), 913–916. Retrieved from https://dx.doi.org/10.1016/j.scriptamat.2007.07.037 10.1016/j.scriptamat.2007.07.037
Bettini, E., Kivisäkk, U., Leygraf, C. & Pan, J. (2013). Study of corrosion behavior of a 22% Cr duplex stainless steel: Influence of nano-sized chromium nitrides and exposure temperature. Electrochimica Acta 113, 280–289. Retrieved from https://dx.doi.org/10.1016/j.electacta.2013.09.056 10.1016/j.electacta.2013.09.056
Chai, G. & Kangas, P. (2019). Hyper-Duplex Stainless Steels. Hyper-Duplex Stainless Steels . Retrieved from Https://Www.Materials.Sandvik/Contentassets/2fb9a78a95e54cfba303361e04151a68/Sav0049_Whitepaper_Hyperduplex_150606.Pdf.2017.Accessed11Nobember
Chail, G. & Kangas, P. (2016). Super and hyper duplex stainless steels: structures, properties and applications. Procedia Structural Integrity 2, 1755–1762. Retrieved from https://dx.doi.org/10.1016/j.prostr.2016.06.221 10.1016/j.prostr.2016.06.221
Charles And, J. & Bernhardsson, S. (1991). Super Duplex Stainless Steels: Structure And Properties. In Duplex Stainless Steels’91 ( V.1. Ed: Charles & J. , Eds. ). (pp. 3-48)
del Coz Díaz, J.J., Menéndez Rodríguez, P., García Nieto, P.J. & Castro-Fresno, D. (2010). Comparative analysis of TIG welding distortions between austenitic and duplex stainless steels by FEM. Applied Thermal Engineering 30(16), 2448–2459. Retrieved from https://dx.doi.org/10.1016/j.applthermaleng.2010.06.016 10.1016/j.applthermaleng.2010.06.016
Deng, B., Wang, Z., Jiang, Y., Sun, T., Xu, J. & Li, J. (2009). Effect Of Thermal Cycles On The Corrosion And Mechanical Properties Of Uns S31803 Duplex Stainless Steel. Corrosion Science 51, 2969–2975.
Emami, S., Saeid, T. & Khosroshahi, R. A. (2018). Microstructural evolution of friction stir welded SAF 2205 duplex stainless steel. Journal of Alloys and Compounds 739, 678–689. Retrieved from https://dx.doi.org/10.1016/j.jallcom.2017.12.310 10.1016/j.jallcom.2017.12.310
Hussain, E. & Husain, A. (2005). Erosion — corrosion of duplex stainless steel under Kuwait marine condition. Desalination 183(1-3), 227–234. Retrieved from https://dx.doi.org/10.1016/j.desal.2005.02.051 10.1016/j.desal.2005.02.051
Kashiwar, A., Vennela, N. P., Kamath, S.L. & Khatirkar, R.K. (2012). Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel. Materials Characterization 74, 55–63. Retrieved from https://dx.doi.org/10.1016/j.matchar.2012.09.008 10.1016/j.matchar.2012.09.008
Li, H., Zhou, E., Zhang, D., Xu, D., Xia, J., Yang, C., Feng, H., Jiang, Z., Li, X., Gu, T. & Yang, K. (2016). Microbiologically Influenced Corrosion Of 2707 Hyper-Duplex Stainless Steel By Marine Pseudomonas Aeruginosa Biofilm. Scientific Reports .
Martins, M. & Casteletti, L. C. (2005). Heat treatment temperature influence on ASTM A890 GR 6A super duplex stainless steel microstructure. Materials Characterization 55(3), 225–233. Retrieved from https://dx.doi.org/10.1016/j.matchar.2005.05.008 10.1016/j.matchar.2005.05.008
Martins, M. (2006). Microstructural-Mechanical Characterization And Corrosion Resistance Of Astm A890 / A890m Grade 6a Super Duplex Stainless, Doctoral Thesis, Universidade De São Paulo-Br, Interunidades Eesc-Ifsc-Iqsc, Steel. Microstructural-Mechanical Characterization And Corrosion Resistance Of Astm A890 / A890m Grade 6a Super Duplex Stainless .
Meng, H., Hu, X. & Neville, A. (2007). A systematic erosion–corrosion study of two stainless steels in marine conditions via experimental design. Wear 263(1-6), 355–362. Retrieved from https://dx.doi.org/10.1016/j.wear.2006.12.007 10.1016/j.wear.2006.12.007
Mironova-Ulmane, N., Kuzmin, A., Sildos, I. & Pärs, M. (2011). Polarisation dependent Raman study of single-crystal nickel oxide. Open Physics 9(4). Retrieved from https://dx.doi.org/10.2478/s11534-010-0130-9 10.2478/s11534-010-0130-9
Pehkonen, S. O. & Yuan, S. (2019). Tailored Thin Coatings For Corrosion Inhibition Using A Molecular Approach. Interface Science And Technology 23.
Ran, Q., Liu, Q., Xu, Y., Xu, W., Li, J., Xiao, X., Hu, J. & Jiang, L. (2015). Nitrogen-Induced Selective High-Temperature Internal Oxidation Behavior In Duplex Stainless Steels. Nitrogen-Induced Selective High-Temperature Internal Oxidation Behavior In Duplex Stainless Steels 19cr-10mn-0.3ni-Xn 98, 737–747.
Sánchez-Tovar, R., Leiva-García, R. & García-Antón, J. (2015). Characterization of thermal oxide films formed on a duplex stainless steel by means of confocal-Raman microscopy and electrochemical techniques. Thin Solid Films 576, 1–10. Retrieved from https://dx.doi.org/10.1016/j.tsf.2014.12.024 10.1016/j.tsf.2014.12.024
Sharafi, S. (1993). Microstructure Of Super-Duplex Stainless Steels. Doctor Of Philosophy. St. Edmund College, The University Of Cambridge. Microstructure Of Super-Duplex Stainless Steels. Doctor Of Philosophy . Retrieved from Https://Doi.Org/10.17863/Cam.14216
Smuk, O. (2004). Microstructure And Properties Of Modern P/M Super Duplex Stainless Steels. Doctoral Thesis. Dpto Of Materials Science And Engineering, Royal Institute Of Technology. Microstructure And Properties Of Modern P/M Super Duplex Stainless Steels. Doctoral Thesis. Dpto Of Materials Science And Engineering .
Software, T.-C. (2017). Stockholm. Stockholm, Sweden:
Souza, E. C., Rossitti, S. M. & Rollo, J. M.D.A. (2010). Influence of chloride ion concentration and temperature on the electrochemical properties of passive films formed on a superduplex stainless steel. Materials Characterization 61(2), 240–244. Retrieved from https://dx.doi.org/10.1016/j.matchar.2009.12.004 10.1016/j.matchar.2009.12.004
Soyama, J., Lopes, T. P., Zepon, G., Kiminami, C. S., Botta, W. J. & Bolfarini, C. (2019). Wear Resistant Duplex Stainless Steels Produced by Spray Forming. Metals and Materials International 25(2), 456–464. Retrieved from https://dx.doi.org/10.1007/s12540-018-0202-8 10.1007/s12540-018-0202-8
(1999). Standard Practice For Castings, Iron-Chromium-Nickel-Molybdenum Corrosion Resistant, Duplex (Austenitic/Ferritic) For General Application. In American Society For Testing And Materials - Astm A890/A890m-91. (pp. 556-569) Annual Book Of Astm Standards
Toshev, Y., Kostadinov, K. & K. (2006). Protective Coating Of Zinc And Zinc Alloys For Industrial Applications. 4m 2006 - Second International Conference On Multi-Material Micro Manufacture 397–326.
Wang, S., Ma, Q. & Li, Y. (2011). Characterization Of Microstructure, Mechanical Properties And Corrosion Resistance Of Dissimilar Welded Joint Between 2205 Duplex Stainless Steel And 16mnr. Materials And Design 32, 831–837.
Xu, Y., Jin, Q., Li, J., Xiao, X. & Zhang, X. (2012). Oxidation Induced Phase Transformation Of Duplex Stainless Steel 25cr-10mn-2ni. Corrosion Science 55, 233–237.
Zanotto, F., Grassi, V., Merlin, M., Balbo, A. & Zucchi, F. (2015). Effect of brief heat treatments performed between 650 and 850°C on corrosion behaviour of a lean duplex stainless steel. Corrosion Science 94, 38–47. Retrieved from https://dx.doi.org/10.1016/j.corsci.2015.01.035 10.1016/j.corsci.2015.01.035
Zepon, G., Ellendt, N., Uhlenwinkel, V. & Bolfarini, C. (2016). Solidification Sequence of Spray-Formed Steels. Metallurgical and Materials Transactions A 47(2), 842–851. Retrieved from https://dx.doi.org/10.1007/s11661-015-3253-1 10.1007/s11661-015-3253-1
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Moises Meza Pariona
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.