• Denisse Morales-Serrato Laboratorio de Transferencia y Degradación de Contaminantes. Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih., México, C. P. 32300, México
  • Jonatan Torres-Pérez Laboratorio de Transferencia y Degradación de Contaminantes. Instituto de Ciencias Biomédicas, Universidad Autónoma de Ciudad Juárez, Envolvente del PRONAF y Estocolmo s/n, Ciudad Juárez, Chih., México, C. P. 32300, México
  • Álvaro de Jesús Ruíz-Baltazar Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla las Mesas, Querétaro, QRO, México CP 76230
  • Simón Yobanny Reyes-López Instituto De Ciencias Biomédicas, Universidad Autónoma De Ciudad Juárez, Envolvente Del Pronaf Y Estocolmo S/N, Ciudad Juárez, Chihuahua, México C.P. 32300



Wastewater Treatment, Adsorption, Emerging Pollutants, Tetracyclines, Adsorbent Materials

Abstract [English]

Water pollution is a serious environmental problem caused by activities. A group of pollutants that are not controlled in the environment but that cause harmful effects on the ecosystem are known as emerging pollutants. One of these groups of emerging pollutants detected in water bodies are pharmaceutical compounds. One of the main problems caused by pharmaceutical compounds as pollutant is bacterial resistance. are a family of antibiotics frequently used. Due to their poor absorption they are released into the environment through feces and urine as active ingredients. Wastewater treatment consists in three stages: primary, secondary, and tertiary treatment. Tertiary treatment employs methods such as reverse osmosis, oxidation-reduction, ultraviolet irradiation, and adsorption. Adsorption is used because it is a simple and effective. For the choice of an effective adsorbent material, surface area, porosity, adsorption capacity, mechanical stability, and factors such as profitability, regeneration, sustainability, and selectivity are considered. In the present review, the adsorbents commonly used in the treatment of water contaminated with were analyzed. The adsorbents used have been classified in a general way as metallic materials, polymers, ceramics, composites, and materials based on biomass.


Download data is not yet available.


Albert, A. (1952). Selective toxicity. Lect. Sci. Basis Med 2, 14–28.

Aqel, A., El-Nour, K. M.M. A., Ammar, R. A.A. & Al-Warthan, A. (2012). Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation. Arabian Journal of Chemistry 5(1), 1–23. Retrieved from 10.1016/j.arabjc.2010.08.022 DOI:

Baile, P., Vidal, L. & Canals, A. (2019). A modified zeolite/iron oxide composite as a sorbent for magnetic dispersive solid-phase extraction for the preconcentration of nonsteroidal anti-inflammatory drugs in water and urine samples. Journal of Chromatography A 1603, 33–43. Retrieved from 10.1016/j.chroma.2019.06.039 DOI:

Bansal, O. P. (2013). Chlortetracycline in Illite and Kaolinite Suspensions. Chlortetracycline in Illite and Kaolinite Suspensions 2013. DOI:

Belaib, F., Azzedine, M., Boubeker, B. & Abdeslam-Hassen, M. (2014). Experimental study of oxytetracycline retention by adsorption onto polyaniline coated peanut shells. International Journal of Hydrogen Energy 39(3), 1511–1515. Retrieved from 10.1016/j.ijhydene.2013.05.015 DOI:

Bouaziz, Z., Soussan, L., Janot, J.-M., Jaber, M., Ben Haj Amara, A. & Balme, S. (2018). Dual role of layered double hydroxide nanocomposites on antibacterial activity and degradation of tetracycline and oxytetracyline. Chemosphere 206, 175–183. Retrieved from 10.1016/j.chemosphere.2018.05.003 DOI:

Burton, A. (2018). Recent trends in the synthesis of high-silica zeolites. Catal. Rev 60(1), 132–175. DOI:

Cabildo, D., Claramunt, M., Cornago, R., Escolástico, M., Santos, C., Farrán, S., García, M., López, M., Pérez, C., Pérez, J., Santa María, M. & Sanz, M. (2008). No Title ( Reciclado Y Tratamiento de Residuos, EUNED. & Madrid , Eds. ). (pp. 393-395)

C., D. C. & Cdc, P. (2020). No Title. Antibiotic / Antimicrobial Resistance (AR / AMR) .

Cheng, D. (2019). Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review. Bioresour. Technol 299, 122654. DOI:

Coday, B. D., Xu, P., Beaudry, E. G., Herron, J., Lampi, K., Hancock, N. T. & Cath, T. Y. (2014). The sweet spot of forward osmosis: Treatment of produced water, drilling wastewater, and other complex and difficult liquid streams. Desalination 333(1), 23–35. Retrieved from 10.1016/j.desal.2013.11.014 DOI:

Couto, C. F., Lange, L. C. & Amaral, M. C.S. (2019). Occurrence, fate and removal of pharmaceutically active compounds (PhACs) in water and wastewater treatment plants—A review. Journal of Water Process Engineering 32, 100927. Retrieved from 10.1016/j.jwpe.2019.100927 DOI:

Cristóvão, R. O., Botelho, C. M., Martins, R. J.E., Loureiro, J. M. & Boaventura, R. A.R. (2014). Primary treatment optimization of a fish canning wastewater from a Portuguese plant. Water Resources and Industry 6, 51–63. Retrieved from 10.1016/j.wri.2014.07.002 DOI:

Dai, J. (2018). Sustainable bovine bone-derived hierarchically porous carbons with excellent adsorption of antibiotics: Equilibrium, kinetic and thermodynamic investigation. Powder Technol 331, 162–170. DOI:

Dai, Y. (2019). New use for spent coffee ground as an adsorbent for tetracycline removal in water. Chemosphere 215, 163–172. DOI:

Deng, Y. & Zhao, R. (2015). Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Reports 1(3), 167–176. DOI:

Díaz, I. (2017). Environmental uses of zeolites in Ethiopia. Catal. Today 285, 29–38. DOI:

Eniola, J. O., Kumar, R., Al-Rashdi, A. A. & Barakat, M.A. (2020). Hydrothermal synthesis of structurally variable binary CuAl, MnAl and ternary CuMnAl hydroxides for oxytetracycline antibiotic adsorption. Journal of Environmental Chemical Engineering 8(2), 103535. Retrieved from 10.1016/j.jece.2019.103535 DOI:

Fatta-Kassinos, D., Meric, S. & Nikolaou, A. (2011). Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Analytical and Bioanalytical Chemistry 399(1), 251–275. Retrieved from 10.1007/s00216-010-4300-9 DOI:

Figueroa, R. A., Leonard, A. & MacKay, A. A. (2004). Modeling Tetracycline Antibiotic Sorption to Clays. Environmental Science & Technology 38(2), 476–483. Retrieved from 10.1021/es0342087 DOI:

Gao, Y. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Colloid Interface Sci 368(1), 540–546. DOI:

Geissen, V. (2015). Emerging pollutants in the environment: A challenge for water resource management. Int. Soil Water Conserv. Res 3(1), 57–65. DOI:

González-García, P. (2018). Activated carbon from lignocellulosics precursors: A review of the synthesis methods, characterization techniques and applications. Renewable and Sustainable Energy Reviews 82, 1393–1414. Retrieved from 10.1016/j.rser.2017.04.117 DOI:

Gupta, V. K., Agarwal, S., Sadegh, H., Ali, G. A.M., Bharti, A. K. & Hamdy Makhlouf, A. S. (2017). Facile route synthesis of novel graphene oxide-β-cyclodextrin nanocomposite and its application as adsorbent for removal of toxic bisphenol A from the aqueous phase. Journal of Molecular Liquids 237, 466–472. Retrieved from 10.1016/j.molliq.2017.04.113 DOI:

Harja, M. & Ciobanu, G. (2018). Studies on adsorption of oxytetracycline from aqueous solutions onto hydroxyapatite. Science of The Total Environment 628-629, 36–43. Retrieved from 10.1016/j.scitotenv.2018.02.027 DOI:

Hassan, S. S.M., Abdel-Shafy, H. I. & Mansour, M. S.M. (2019). Removal of pharmaceutical compounds from urine via chemical coagulation by green synthesized ZnO-nanoparticles followed by microfiltration for safe reuse. Arabian Journal of Chemistry 12(8), 4074–4083. Retrieved from 10.1016/j.arabjc.2016.04.009 DOI:

Huang, L., Shi, C., Zhang, B., Niu, S. & Gao, B. (2013). Characterization of Activated Carbon Fiber by Microwave Heating and the Adsorption of Tetracycline Antibiotics. Separation Science and Technology 48(9), 1356–1363. Retrieved from 10.1080/01496395.2012.732978 DOI:

Jia, M. (2013). Effects of pH and metal ions on oxytetracycline sorption to maize-straw-derived biochar. Bioresour. Technol 136, 87–93. DOI:

Jiang, N., Shang, R., Heijman, S. G.J. & Rietveld, L. C. (2018). High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Research 144, 145–161. Retrieved from 10.1016/j.watres.2018.07.017 DOI:

Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K. & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem. Eng. J 248, 168–174. DOI:

Król, M., Mozgawa, W., Jastrzębski, W. & Barczyk, K. (2012). Application of IR spectra in the studies of zeolites from D4R and D6R structural groups. Microporous and Mesoporous Materials 156, 181–188. Retrieved from 10.1016/j.micromeso.2012.02.040 DOI:

Kwon, S., Fan, M., Dacosta, H. F. M., Russell, A. G., Berchtold, K. A. & Dubey, M. K. (2011). CO2 Sorption. CO2 Sorption . DOI:

Liang, G. (2019). Efficient removal of oxytetracycline from aqueous solution using magnetic montmorillonite-biochar composite prepared by one step pyrolysis. Sci. Total Environ 695, 133800. DOI:

Liao, P. (2013). Adsorption of tetracycline and chloramphenicol in aqueous solutions by bamboo charcoal: A batch and fixed-bed column study. Chem. Eng. J 228, 496–505. DOI:

Lin, C. C. & Lee, C. Y. (2019). Adsorption of ciprofloxacin in water using Fe3O4 nanoparticles formed at low temperature and high reactant concentrations in a rotating packed bed with co-precipitation. Mater. Chem. Phys 240, 122049. DOI:

Lin, D. & Xing, B. (2008). Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups. Environmental Science & Technology 42(19), 7254–7259. Retrieved from 10.1021/es801297u DOI:

Lin, Y., Xu, S. & Li, J. (2013). Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chem. Eng. J 225, 679–685. DOI:

Liu, M., Hou, L.-a., Yu, S., Xi, B., Zhao, Y. & Xia, X. (2013). MCM-41 impregnated with A zeolite precursor: Synthesis, characterization and tetracycline antibiotics removal from aqueous solution. Chemical Engineering Journal 223, 678–687. Retrieved from 10.1016/j.cej.2013.02.088 DOI:

Liu, P., Liu, W. J., Jiang, H., Chen, J. J., Li, W. W. & Yu, H. Q. (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol 121, 235–240. DOI:

Li, Z., Schulz, L., Ackley, C. & Fenske, N. (2010). Adsorption of tetracycline on kaolinite with pH-dependent surface charges. Journal of Colloid and Interface Science 351(1), 254–260. Retrieved from 10.1016/j.jcis.2010.07.034 DOI:

Luján-Facundo, M.J., Iborra-Clar, M.I., Mendoza-Roca, J.A. & Alcaina-Miranda, M.I. (2019). Pharmaceutical compounds removal by adsorption with commercial and reused carbon coming from a drinking water treatment plant. Journal of Cleaner Production 238, 117866. Retrieved from 10.1016/j.jclepro.2019.117866 DOI:

Ma, C. (2018). Honeycomb tubular biochar from fargesia leaves as an effective adsorbent for tetracyclines pollutants. J. Taiwan Inst. Chem. Eng 91, 299–308. DOI:

Mashkoor, F., Nasar, A. & Inamuddin, (2020). Carbon nanotube-based adsorbents for the removal of dyes from waters: A review. Environmental Chemistry Letters 18(3), 605–629. Retrieved from 10.1007/s10311-020-00970-6 DOI:

Mercier, J. P., Zambelli, G. & Kurz, W. (2012). Introduction to materials science. Elsevier Science

Mohammed, A. A. & Kareem, S. L. (2019). Adsorption of tetracycline fom wastewater by using Pistachio shell coated with ZnO nanoparticles: Equilibrium, kinetic and isotherm studies. Alexandria Engineering Journal 58(3), 917–928. Retrieved from 10.1016/j.aej.2019.08.006 DOI:

Nguyen, C. H., Fu, C.-C., Kao, D.-Y., Tran, T. T. V. & Juang, R.-S. (2020). Adsorption removal of tetracycline from water using poly(vinylidene fluoride)/polyaniline-montmorillonite mixed matrix membranes. Journal of the Taiwan Institute of Chemical Engineers 112, 259–270. Retrieved from 10.1016/j.jtice.2020.06.007 DOI:

N. I. & Nih, H. (2020). Antibiotics – Tetracyclines. Antibiotics - Tetracyclines .

Noreen, U. (2019). Water pollution and occupational health hazards caused by the marble industries in district Mardan. Environ. Technol. Innov 16, 100470. DOI:

Nowack, B. & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental Pollution 150(1), 5–22. Retrieved from 10.1016/j.envpol.2007.06.006 DOI:

Oladoja, N.A., Adelagun, R.O.A., Ahmad, A.L., Unuabonah, E.I. & Bello, H.A. (2014). Preparation of magnetic, macro-reticulated cross-linked chitosan for tetracycline removal from aquatic systems. Colloids and Surfaces B: Biointerfaces 117, 51–59. Retrieved from 10.1016/j.colsurfb.2014.02.006 DOI:

Pancorbo-Mendoza, J. & Zegarra-Del-Carpio, R. (2004). Antibióticos sistémicos en dermatología. Dermatologia Peru 14(7), 161–179.

Papa, E. (2018). Zeolite-geopolymer composite materials: Production and characterization. J. Clean. Prod 171, 76–84. DOI:

Park, S.-M., Alessi, D. S. & Baek, K. (2019). Selective adsorption and irreversible fixation behavior of cesium onto 2:1 layered clay mineral: A mini review. Journal of Hazardous Materials 369, 569–576. Retrieved from 10.1016/j.jhazmat.2019.02.061 DOI:

Percival, S.L., Bowler, P.G. & Russell, D. (2005). Bacterial resistance to silver in wound care. Journal of Hospital Infection 60(1), 1–7. Retrieved from 10.1016/j.jhin.2004.11.014 DOI:

Pham, T. D., Tran, T. T., Le, V. A., Pham, T. T., Dao, T. H. & Le, T. S. (2019). Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. J. Mol. Liq 287, 110900. DOI:

Piai, L., Dykstra, J. E., Adishakti, M. G., Blokland, M., Langenhoff, A. A.M. & van der Wal, A. (2019). Diffusion of hydrophilic organic micropollutants in granular activated carbon with different pore sizes. Water Research 162, 518–527. Retrieved from 10.1016/j.watres.2019.06.012 DOI:

Raeiatbin, P. & Açıkel, Y. S. (2017). Removal of tetracycline by magnetic chitosan nanoparticles from medical wastewaters. DESALINATION AND WATER TREATMENT 73, 380–388. Retrieved from 10.5004/dwt.2017.20421 DOI:

Rao, A. K., Müller, C. N. R. & Cheetham, A. (2004). The Chemistry of Nanomaterials. The Chemistry of Nanomaterials: Synthesis, Properties and Applications . DOI:

Rattanachueskul, N., Saning, A., Kaowphong, S., Chumha, N. & Chuenchom, L. (2017). Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresource Technology 226, 164–172. Retrieved from 10.1016/j.biortech.2016.12.024 DOI:

Rivera-Utrilla, J., Gómez-Pacheco, C. V., Sánchez-Polo, M., López-Peñalver, J. J. & Ocampo-Pérez, R. (2013). Tetracycline removal from water by adsorption/bioadsorption on activated carbons and sludge-derived adsorbents. Journal of Environmental Management 131, 16–24. Retrieved from 10.1016/j.jenvman.2013.09.024 DOI:

Ruff, M., Mueller, M. S., Loos, M. & Singer, H. P. (2015). Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry – Identification of unknown sources and compounds. Water Research 87, 145–154. Retrieved from 10.1016/j.watres.2015.09.017 DOI:

Saha, P. & Chowdhury, S. (2011). Insight Into Adsorption Thermodynamics. Thermodynamics . DOI:

Saman, N., Othman, N. S., Chew, L.-Y., Mohd Setapar, S. H. & Mat, H. (2020). Cetyltrimethylammonium bromide functionalized silica nanoparticles (MSN) synthesis using a combined sol-gel and adsorption steps with enhanced adsorption performance of oxytetracycline in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 112, 67–77. Retrieved from 10.1016/j.jtice.2020.07.008 DOI:

Santaeufemia, S., Torres, E., Mera, R. & Abalde, J. (2016). Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. Journal of Hazardous Materials 320, 315–325. Retrieved from 10.1016/j.jhazmat.2016.08.042 DOI:

Sharififard, H., shahraki, Z. H., Rezvanpanah, E. & Rad, S. H. (2018). A novel natural chitosan/activated carbon/iron bio-nanocomposite: Sonochemical synthesis, characterization, and application for cadmium removal in batch and continuous adsorption process. Bioresource Technology 270, 562–569. Retrieved from 10.1016/j.biortech.2018.09.094 DOI:

Smith, J. & Hashemi, W. (2006). Fundamentos de la ciencia e ingeniería de materiales. Fundamentos de la ciencia e ingeniería de materiales .

Song, X., Liu, D., Zhang, G., Frigon, M., Meng, X. & Li, K. (2014). Adsorption mechanisms and the effect of oxytetracycline on activated sludge. Bioresour. Technol 151, 428–431. DOI:

Soori, M. M., Ghahramani, E., Kazemian, H., Al-Musawi, T. J. & Zarrabi, M. (2016). Intercalation of tetracycline in nano sheet layered double hydroxide: An insight into UV/VIS spectra analysis. Journal of the Taiwan Institute of Chemical Engineers 63, 271–285. Retrieved from 10.1016/j.jtice.2016.03.015 DOI:

Taheran, M., Naghdi, M., Brar, S.K., Knystautas, E.J., Verma, M., Ramirez, A.A., Surampalli, R.Y. & Valero, J.R. (2016). Adsorption study of environmentally relevant concentrations of chlortetracycline on pinewood biochar. Science of The Total Environment 571, 772–777. Retrieved from 10.1016/j.scitotenv.2016.07.050 DOI:

Vicente, D. & Pérez-Trallero, E. (2010). Tetraciclinas, sulfamidas y metronidazol. Enfermedades Infecciosas y Microbiología Clínica 28(2), 122–130. Retrieved from 10.1016/j.eimc.2009.10.002 DOI:

Vu, B. K., Shin, E. W., Snisarenko, O., Jeong, W. S. & Lee, H. S. (2010). Removal of the antibiotic tetracycline by Fe-impregnated SBA-15. Korean Journal of Chemical Engineering 27(1), 116–120. Retrieved from 10.1007/s11814-009-0313-5 DOI:

Vu, B. K., Snisarenko, O., Lee, H. S. & Shin, E. W. (2010). Adsorption of tetracycline on La‐impregnated MCM‐41 materials. Environmental Technology 31(3), 233–241. Retrieved from 10.1080/09593330903453210 DOI:

Wang, H. (2018). Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Adv 8(29), 16260–16268. DOI:

Wang, Y. J., Sun, R. J., Xiao, A. Y., Wang, S. Q. & Zhou, D. M. (2010). Phosphate affects the adsorption of tetracycline on two soils with different characteristics. Geoderma 156(3-4), 237–242. DOI:

Worch, E. (2012). adsorption Technology in Water Treatment. Adsorption Technology in Water Treatment . DOI:

Wu, J., Wang, Y., Wu, Z., Gao, Y. & Li, X. (2020). Adsorption properties and mechanism of sepiolite modified by anionic and cationic surfactants on oxytetracycline from aqueous solutions. Sci. Total Environ 708, 134409. DOI:

Xiong, W., Ni, P., Chen, Y., Gao, Y., Li, S. & Zhan, A. (2019). Biological consequences of environmental pollution in running water ecosystems: A case study in zooplankton. Environmental Pollution 252, 1483–1490. Retrieved from 10.1016/j.envpol.2019.06.055 DOI:

Yagub, M. T., Sen, T. K., Afroze, S. & Ang, H.M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science 209, 172–184. Retrieved from 10.1016/j.cis.2014.04.002 DOI:

Yuan, L. (2019). Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. J. Colloid Interface Sci 541, 101–113.

Yuan, L. (2019). Influences of pH and metal ions on the interactions of oxytetracycline onto nano-hydroxyapatite and their co-adsorption behavior in aqueous solution. J. Colloid Interface Sci 541, 101–113. DOI:

Yu, J. G. (2014). Aqueous adsorption and removal of organic contaminants by carbon nanotubes. Sci. Total Environ (1) 241–251. DOI:

Zaher, A., Taha, M., Farghali, A. A. & Mahmoud, R. K. (2020). Zn/Fe LDH as a clay-like adsorbent for the removal of oxytetracycline from water: combining experimental results and molecular simulations to understand the removal mechanism. Environmental Science and Pollution Research 27(11), 12256–12269. Retrieved from 10.1007/s11356-020-07750-3 DOI:

Zaher, A., Taha, M. & Mahmoud, R. K. (2021). Possible adsorption mechanisms of the removal of tetracycline from water by La-doped Zn-Fe-layered double hydroxide. Journal of Molecular Liquids 322, 114546. Retrieved from 10.1016/j.molliq.2020.114546 DOI:

Zhang, B. (2013). Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Mater. Sci. Eng. C 33(7), 4401–4408. DOI:

Zhang, H. (2018). Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors. Environ. Pollut 243, 1550–1557. DOI:

Zhang, L., Song, X., Liu, X., Yang, L., Pan, F. & Lv, J. (2011). Studies on the removal of tetracycline by multi-walled carbon nanotubes. Chem. Eng. J 178, 26–33. DOI:

Zhang, L., Yao, L., Ye, L., Long, B., Dai, Y. & Ding, Y. (2020). Benzimidazole-based hyper-cross-linked polymers for effective adsorption of chlortetracycline from aqueous solution. J. Environ. Chem. Eng 8(6), 104562. DOI:

Zhang, X., Lin, X., He, Y. & Luo, X. (2019). Phenolic hydroxyl derived copper alginate microspheres as superior adsorbent for effective adsorption of tetracycline. Int. J. Biol. Macromol 136, 445–459. DOI:

Zhang, Y. (2017). Removal of tetracycline and oxytetracycline from water by magnetic Fe3O4@graphene. Environ. Sci. Pollut. Res 24(3), 2987–2995. DOI:

Zhou, H. & Smith, D. W. (2001). Advanced technologies in water and wastewater treatment,” Can. J. Civ. Eng 28(S1), 49–66. DOI:

Zhou, Q., Li, Z., Shuang, C., Li, A., Zhang, M. & Wang, M. (2012). Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chem. Eng. J 210, 350–356. DOI:

Zou, Y. L., Huang, H., Chu, M., Lin, J. W., Yin, D. Q. & Li, Y. N. (2012). Adsorption Research of Tetracycline from Water by HCl-Modified Zeolite. Advanced Materials Research 573-574, 43–47. Retrieved from 10.4028/ DOI:



How to Cite

Serrato, D. M., Pérez, J. T., Baltazar, Álvaro de J. R., & López, S. Y. R. (2021). ADSORBENT MATERIALS FOR EMERGING CONTAMINANT (TETRACYCLINE) REMOVAL. International Journal of Research -GRANTHAALAYAH, 9(4), 466–491.

Most read articles by the same author(s)