EVALUATION OF COFFEE GROWTH, YIELD AND QUALITY UNDER COFFEE SHADE TREES AT MECHARA ON STATION, WEST HARARGHE ZONE, ETHIOPIA
DOI:
https://doi.org/10.29121/granthaalayah.v9.i4.2021.3816Keywords:
Coffee-Based Agroforestry System, Coffee Shade Value, Coffee Growth, Coffee Quality AttributionsAbstract [English]
Abstract: Coffee production with shade trees is important to improve growth and quality of coffee, sustain and restore agroecology and nature based agroforestry practices. The trial was conducted at Mechara Agricultural Research Center (on station) in DaroLebu District of West Hararghe Zone, Oromia, Ethiopia. The study was intended to evaluate the influence of coffee shade trees on growth performance, yield and quality of coffee (Coffea arabica L.) under the canopy of Erytherina absinica, Cordia africana and Acacia sieberiana. The design was Randomized complete block design with three replications. The outcome had been observed a significant value at (p<0.05) probability level, non- significant value at (p>0.05) probability level and highly significance value at (p<0.01) probability level between treatments. Statistically significant and non- significant differences were observed between shaded and unshaded as well as within shaded effect based on the given parameters. Integration of shade in coffee farming system created creditable promising in producing organic coffee. Shade utility could be confirmed as to be ecologically sustainable, economically viable and socially acceptable practice. In so doing that, the effect of Erytherina absinica, Cordia africana shade trees illustrated the highest mean value in most parameters, while the least one is under the Acacia sieberiana shade tree. So the effect of Erytherina absinica mean observed with the highest value on total bearing plants 60%, thousand seed weight 59% and yield in Quintal per hectare 47.4% greater than the least treatments’ mean value based on growth parameters. On the other hand, the effect of Erytherina absinica mean observed with the higher value on aromatic intensity 46.4%, aromatic quality 87.2%, acidity 92.4%, body 93.5%, flavors 88.6% and overall quality 88.6% than the least treatments’ mean value, and also the effect of un-shade mean observed with the higher value on astringency 68.8% and bitterness 93.5% than the least treatments’ mean value based on organoleptic parameters. The highest mean value of Erytherina absinica observed on total bearing plants 12.1, thousand seed weight 130 gram and yield in Quintal per hectare 5.7 based on growth parameters, while based on organoleptic parameters, the highest mean value observed under the effect of Erytherina absinica shade tree on aromatic intensity 4.5, aromatic quality 3.9, acidity 7.9, body 7.7, flavors 7.9 and overall quality 7.9. Therefore, based on the most treatments’ parameters, to be the best shade tree was Erythrina abyssinica followed by cordia africana. Commonly, the dynamic indication of the treatment’s means difference were indicated between shaded and unshaded rather than within shaded means variation at most treatments’ parameters.
Downloads
References
African Development Bank (AfDB), 2010. CoffeeProduction in Africa and the Global Market- Situation. (n.d.). Community, 1(2), 1–9.
Albertin, A., & Nair, P. K. R. (2004). Farmers’ Perspectives on the Role of Shade Trees in Coffee Production Systems: An Assessment from the Nicoya Peninsula, Costa Rica. Human Ecology, 32(4), 443–463. Retrieved from https://dx.doi.org/10.1023/b:huec.0000043515.84334.76 10.1023/b:huec.0000043515.84334.76 DOI: https://doi.org/10.1023/B:HUEC.0000043515.84334.76
Bentley, J., & Baker, P. S. (2000). The Colombian Coffee Growers’ Federation. The Colombian Coffee Growers’ Federation: organised, successful smallholder farmers for 70 years.
Bote, A. D., & Struik. (2011). Effect of shade on growth, production and quality of coffee (Cof- fea arabica) in Ethiopia. Journal of Horticulture & Forestry, 3(11), 336–341.
Bueren, E. T. L. V., & Struik, P. C. (2004). The consequences of the concept of naturalness for organic plant breeding and propagation. NJAS - Wageningen Journal of Life Sciences, 52(1), 85–95. Retrieved from https://dx.doi.org/10.1016/s1573-5214(04)80031-9 10.1016/s1573-5214(04)80031-9 DOI: https://doi.org/10.1016/S1573-5214(04)80031-9
Castro, L. M., Calvas, B., Hildebrandt, P., & &knoke, T. (2013). Avoiding the loss of shade coffee plantations: how to derive conservation payments for risk averse land. Avoiding the loss of shade coffee plantations: how to derive conservation payments for risk averse land. DOI: https://doi.org/10.1007/s10457-012-9554-0
DaMatta, F. M., & Ramalho, J. D. C. (2006). Impacts of drought and temperature stress on cof- fee physiology and production: a review. Brazilian Journal of Plant Physiology, 18(1), 55–81. Retrieved from https://dx.doi.org/10.1590/s1677-04202006000100006 10.1590/s1677-04202006000100006 DOI: https://doi.org/10.1590/S1677-04202006000100006
de Souza, H. N., de Goede, R. G., Brussaard, L., Cardoso, I. M., Duarte, E. M., Fernandes, R. B., Gomes, L. C., & Pulleman, M. M. (2012). Protective shade, tree diversity and soil proper- ties in coffee agroforestry systems in the Atlantic Rainforest biome. Agriculture, Ecosys- tems & Environment, 146(1), 179–196. Retrieved from https://dx.doi.org/10.1016/ j.agee.2011.11.007 10.1016/j.agee.2011.11.007 DOI: https://doi.org/10.1016/j.agee.2011.11.007
Diriba, A., Nigatu, L., & Mohammed, M. (2017). Evaluation of (Coffea arabica L.) Physical Yield Aspect under the Canopy of Cordia Africana and Erythrina abyssinica Shade Trees Effect in Arsi Golelcha District. Ethiopia.
Ebisa, L., Reichhuber, A., & Requate, T. (2012). Alternative use systems for the remaining Ethiopian cloud forest and the role of Arabica coffee-A cost-benefit analysis. DOI: https://doi.org/10.1016/j.ecolecon.2012.01.006
Ebisalikassa, A., & Gure. (2017). Diversity of shade tree species in smallholder coffee farms of western Oromia. Economics, 5(4), 102–113.
Escamilla, P. E., Licona-Vargas, A., Díaz-Càrdenas, S., Santoyo-Cortéz, H., Rodríguez- Ramírez, L., & Los sistemas de producción de caféenel centro de Veracruz, México. Unanàlisistecnológico. Revista de Historia (Centro de InvestigacionesHistóricas, Uni- versidad de Costa Rica). (1994). Los sistemas de producción de caféenel centro de Veracruz, México. Unanàlisistecnológico. Revista de Historia (Centro de Investiga- cionesHistóricas, Universidad de Costa Rica)., 30, 41–67.
Evizal, R., Prasmatiwi, F. E., & &nurmayasari, I. (2016). Shade tree species diversity and coffee productivity in Sumberjaya (Vol. 17). West Lampung, Indonesia. Retrieved from https://doi.org/10.13057/biodiv/d170134 DOI: https://doi.org/10.13057/biodiv/d170134
Ferrell, J., & Cockerill, K. (2012). Closing coffee production loops with waste to ethanol in Matagalpa, Nicaragua. Energy for Sustainable Development, 16(1), 44–50. Retrieved from https://dx.doi.org/10.1016/j.esd.2011.12.008 10.1016/j.esd.2011.12.008 DOI: https://doi.org/10.1016/j.esd.2011.12.008
Gao, Y. (2018). The BioeconomicsOf Shade-Grown Coffee Production Under Climate and Price Risks IN PUERTO RICO. In and others (Ed.), The BioeconomicsOf Shade-Grown Coffee Production Under Climate and Price Risks IN PUERTO RICO.
Geromel, C., Ferreira, L. P., Davrieux, F., Guyot, B., Ribeyre, F., dos Santos Scholz, M. B., Pereira, L. F. P., Vaast, P., Pot, D., Leroy, T., Filho, A. A., Vieira, L. G. E., Mazzafera, P., & Marraccini, P. (2008). Effects of shade on the development and sugar metabolism of coffee (Coffea arabica L.) fruits. Plant Physiology and Biochemistry, 46(5-6), 569–579. Retrieved from https://dx.doi.org/10.1016/j.plaphy.2008.02.006 10.1016/j.plaphy.2008.02.006 DOI: https://doi.org/10.1016/j.plaphy.2008.02.006
Gole, T. W., Denich, M., Demel, T., & Vlek, P. (2002). Human Impactson Coffea Arabica GeneticPools in Ethiopia and the Need for its in-situ Conservation. Managing Plant Genetic Diversity, 237–247. DOI: https://doi.org/10.1079/9780851995229.0237
Gole, T. W., & Senbeta. (2008). Sustainable Management and Promotion of Forest Coffee in Bale, EthiopiaBale Eco-Region Sustainable Management Programme SOS Sahel/ FARM-Africa. Addis Ababa.
Grades, E. (2007). Ecophysiological diversity of wild Coffea arabica populations in Ethiopia: Drought adaptation mechanisms. Doctoral Dissertation. Bonn.
Hergoual’ch, K., Harmand, J., Skiba, . U., Catie, ., & Rica, C. (2007). Soil N2O emissionsand car- bon balance in coffee monocultures and agroforestry plantations on Andosols in Costa Rica. Proceedings of IUFRO Symposium on Multistrata Agroforestry Systems.
Hernández, O. R. (1995). Rendimiento y análisis financiero del sistema agroforestal café (Cof- fea arabica cv caturra) con poró (Erythrina poeppigiana) bajo diferentes densidades de laurel (Cordia alliodora). CATIE. Costa Rica.
Hundera, K. (2017). Shade tree selection and management by farmers in traditional coffee pro- duction systems in south west Ethiopia Shade Tree Selection and Management Practices by Farmers in Traditional Coffee Production Systems in Jimma Zone. Southwest Ethiopia.
Improving coffee quality in east and central Africa through enhanced processing practices. (2004). The Netherlands, Amsterdam.
International Coffee Organization. The Global Coffee Crisis: A Threat to Sustainable Devel- opment. (2002). International Coffee Organization. The Global Coffee Crisis: A Threat to Sustainable Development. Retrieved from URL:www.ico.org
Jaramillo, J., Muchugu, E., Vega, F. E., Davis, A., Borgemeister, C., & Chabi-Olaye, A. (2011). Some Like It Hot: The Influence and Implications of Climate Change on Coffee Berry Borer (Hypothenemus hampei) and Coffee Production in East Africa. PLoS ONE, 6(9), e24528–e24528. Retrieved from https://dx.doi.org/10.1371/journal.pone.0024528 10.1371/journal.pone.0024528 DOI: https://doi.org/10.1371/journal.pone.0024528
Jha, S., & Vandermeer, J. H. (2010). Impacts of coffee agroforestry management on tropical bee communities. Biological Conservation, 143(6), 1423–1431. Retrieved from https:// dx.doi.org/10.1016/j.biocon.2010.03.017 10.1016/j.biocon.2010.03.017 DOI: https://doi.org/10.1016/j.biocon.2010.03.017
Lin, B. B. (2007). Agroforestry management as an adaptive strategy against potential micro- climate extremes in coffee agriculture. Agricultural and Forest Meteorology, 144, 85–94. DOI: https://doi.org/10.1016/j.agrformet.2006.12.009
Lin, B. B. (2010). The role of agroforestry in reducing water loss through soil evaporation and crop transpiration in coffee agro ecosystems. Agricultural and Forest Meteorology, 150(4), 510–518. DOI: https://doi.org/10.1016/j.agrformet.2009.11.010
Mark, J. (2005). Shade grown coffee and bird-friendly coffee. Retrieved from http://www.thenibble.com/REVIEWS/nutri/matter/organic-coffee4.asp
Michiel, K., Nguyenvan, T., Donjansen, K., & Sanh. (2004). Coffee handbook of International Plant Research. Vietnam.
Muleta, D., Assefa, F., & Nemomissa, S. (2011). Socioeconomic Benefits Of Shade Trees In Cof- fee Production Systems In Bonga And Yayuhurumu Districts, Southwestern Ethiopia: Farmers’ Perceptions. Ethiopian Journal of Education and Sciences, 7, 39–56.
Muschler, R. G. (2001). Shade improves coffee quality in a sub-optimal coffee-zone of Costa Rica. Agroforestry Syst, 51(2), 131–139. DOI: https://doi.org/10.1023/A:1010603320653
Nigatu, T. G. L. (2014). Ecological and Socio-Economic Importance of Indigenous Multipur- pose Fodder Trees in Three Districts of Wolayta Zone, Southern Ethiopia. Journal of Biodiversity & Endangered Species, 02(04). Retrieved from https://dx.doi.org/10.4172/ 2332-2543.1000136 10.4172/2332-2543.1000136 DOI: https://doi.org/10.4172/2332-2543.1000136
Osman, M. (2001). Rainfall and its erosivity in Ethiopia with special consideration of the cen- tral highlands. -Bonner Bodenkundl. Abh., 37, 249 S. Bonn. agroforestry. Mitigation and adaptation strategies for global change, 12(5), 901–918.
Ricketts, T. H., Daily, G. C., Ehrlich, P. R., & Michener, C. D. (2004). Economic value of trop- ical forest to coffee production. Economic value of tropical forest to coffee production, 101, 12579–12582. Retrieved from https://dx.doi.org/10.1073/pnas.0405147101 10.1073/pnas.0405147101 DOI: https://doi.org/10.1073/pnas.0405147101
Ríos, R. A. V., & Ferguson, R. (2015). Progress Report: Shade Coffee Roundtable Initiative in the Río Loco/Guánica Bay Watershed. Protectores de Cuencas, Incorporated.
Roba, A. D. (2017). Evaluation of Coffee (Coffea arabica L.) on Raw and Cup Quality Aspect Under the Canopy of Cordia africana and Erythrina Abyssinica Shade Trees Effect in Arsi Golelcha District. Ethiopia.
Somarriba, E., Beer, J., Bonnemann, A., Catie, ., Turrialba, C., & Rica. (1996). Arboles legumi- nosos y maderables como sombra para cacao: el concepto. Serie Técnica Informe Técnico: No 274. CATIE, Turrialba, Costa Rica.
Soto-Pinto, L., Perfecto, I., Castillo-Hernandez, J., & Caballero-Nieto, J. (2000). Shade effect on coffee production at the northern Tzeltal zone of the state of Chiapas, Mexico. Agri- culture, Ecosystems & Environment, 80(1-2), 61–69. Retrieved from https://dx.doi.org/ 10.1016/s0167-8809(00)00134-1 10.1016/s0167-8809(00)00134-1 DOI: https://doi.org/10.1016/S0167-8809(00)00134-1
Soto-Pinto, L., Villalvazo-López, V., Jiménez-Ferrer, G., Ramírez-Marcial, N., Montoya, G., & Sinclair, F. L. (2007). The role of local knowledge in determining shade composition of multistrata coffee systems in Chiapas, Mexico. Biodiversity and Conservation, 16(2), 419–436. Retrieved from https://dx.doi.org/10.1007/s10531-005-5436-3 10.1007/ s10531-005-5436-3 DOI: https://doi.org/10.1007/s10531-005-5436-3
Tscharntke, T., Clough, Y., Bhagwat, S. A., Buchori, D., Faust, H., Hertel, D., Hölscher, D., Juhrbandt, J., Kessler, M., Perfecto, I., Scherber, C., Schroth, G., Veldkamp, E., & Wanger, T. C. (2011). Multifunctional shade-tree management in tropical agro- forestry landscapes - a review. Journal of Applied Ecology, 48(3), 619–629. Retrieved from https://dx.doi.org/10.1111/j.1365-2664.2010.01939.x 10.1111/j.1365-2664.2010.01939.x DOI: https://doi.org/10.1111/j.1365-2664.2010.01939.x
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Alemayehu Diriba, Shimelis Dekeba, Wasihun Gizaw, Mosisa Mezigebu
This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.