ROLE OF CARBON DOTS AND THEIR APPLICATIONS IN AGRICULTURE
DOI:
https://doi.org/10.29121/shodhkosh.v5.i5.2024.2682Keywords:
Synthesis, CDs, Nanotechnology, Biocompatibility, Carbon Dioxide, UV RadiationAbstract [English]
Carbon Dots exhibit exceptional size-dependent optical properties that can be adjusted through surface alterations, thus broadening their applicability across various domains. Furthermore, their facile synthesis, excellent dispersibility, solubility, hydrophilic characteristics, biocompatibility, environmental sustainability, cellular permeability, low toxicity, high photostability, and cost-effectiveness have garnered interest across a wide range of applications, from materials chemistry to nanotechnology.
Carbon Dots have long been utilized as growth enhancers by improving the photosynthesis process in agricultural systems. In this approach, the manufactured Carbon Dots of the specified size are distributed on the plant, where the leaf adsorbs the CDs onto its surface. Consequently, Carbon Dots enhance the absorption rate of sunlight and carbon dioxide. Consequently, the rate of photosynthesis escalates. Consequently, the crop's growth and yield may rise by 10%-20%. Moreover, Carbon Dots possess disease-resistant qualities that safeguard them against many ailments.
The substantial incorporation of Carbon Dots in plants significantly enhances seed germination, root development, leaf quantity, and enzymatic activity for the conversion of CO2 into carbohydrates via an accelerated rate of photosynthesis. Consequently, rice crop productivity rises by 14.8%. Furthermore, it possesses disease resistance that safeguards plants from damage. Moreover, Carbon Dots can transform detrimental UV light into photosynthetically active radiation, hence promoting enhanced plant growth. This study elucidates the physiological roles of carbon dots in crop growth and development, photosynthesis, and their uses in enhancing agriculture.
References
Adam, G. O., Sharker, S. M., & Ryu, J. H. (2022). Emerging biomedical applications of carbon dot and polymer composite materials. Applied Sciences, 12(20), 10565. DOI: https://doi.org/10.3390/app122010565
Aji, M. P., Susanto., Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mango-steen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119-126 DOI: https://doi.org/10.1007/s40094-017-0250-3
Alfi, A. A., Alamrani, N. A., Azher, O. A., Snari, R. M., Abumelha, H. M., Al-Ahmed, Z. A., & El-Metwaly, N. M. (2022). Development of carbon dots sensor dipstick from sugarcane bagasse agricultural waste toward all-cellulose-derived tetracycline sensor. Journal of Materials Research and Technology, 19, 4697-4707. DOI: https://doi.org/10.1016/j.jmrt.2022.06.150
Bohlool, B. B., Ladha, J. K., Garrity, D. P., & George, T. (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. Plant and Soil, 141(1), 1. DOI: https://doi.org/10.1007/BF00011307
Bosu, S., Rajamohan, N., Sagadevan, S., & Raut, N. (2023). Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. Chemosphere, 345, 140471. DOI: https://doi.org/10.1016/j.chemosphere.2023.140471
Cramer, G., Urano, K., Delrot, S., et al. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11(1), 163. DOI: https://doi.org/10.1186/1471-2229-11-163
Facure, M. H., Schneider, R., Mercante, L. A., & Correa, D. S. (2020). A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano, 7(12), 3710-3734. DOI: https://doi.org/10.1039/D0EN00787K
Gogoi, S., Sarmah, J. K., Khan, R., & Murali, S. (2022). Postharvest applications of carbon dots in agriculture: food safety. In Carbon Dots in Agricultural Systems (pp. 241-261). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00006-1
Hallaji, Z., Bagheri, Z., Tavassoli, Z., & Ranjbar, B. (2022). Fluorescent carbon dot as an optical amplifier in modern agriculture. Sustainable Materials and Technologies, 34, e00493. DOI: https://doi.org/10.1016/j.susmat.2022.e00493
Hu, J., Jia, W., Wu, X., Zhang, H., Wang, Y., Liu, J., ... & Wang, X. (2022). Carbon dots can strongly promote photosynthesis in lettuce (Lactuca sativa L.). Environmental Science: Nano, 9(4), 1530-1540. DOI: https://doi.org/10.1039/D1EN00948F
Joshi, B., Khataniar, L., & Bhau, B. S. (2022). Role of carbon dots in agricultural systems: biotechnology and nanotechnology approach. In Carbon Dots in Agricultural Systems (pp. 225-240). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00012-7
Kang, Z., & Lee, S. T. (2019). Carbon dots: advances in nanocarbon applications. Nanoscale, 11(41), 19214-19224. DOI: https://doi.org/10.1039/C9NR05647E
Khan, R., Murali, S., & Gogoi, S. (Eds.). (2022). Carbon Dots in Agricultural Systems: Strategies to Enhance Plant Productivity. Academic Press.
Kou, E., Li, W., Zhang, H., Yang, X., Kang, Y., Zheng, M., ... & Lei, B. (2021). Nitrogen and sulfur co-doped carbon dots enhance drought resistance in tomato and mung beans. ACS Applied Bio Materials, 4(8), 6093-6102. DOI: https://doi.org/10.1021/acsabm.1c00427
Li, G., Xu, J., & Xu, K. (2023). Physiological Functions of Carbon Dots and Their Applications in Agriculture: A Review. Nanomaterials, 13(19), 2684. DOI: https://doi.org/10.3390/nano13192684
Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., ... & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437-448. DOI: https://doi.org/10.1039/C9QM00614A
Maholiya, A., Ranjan, P., Khan, R., Murali, S., Nainwal, R. C., Chauhan, P. S., ... & Srivastava, A. K. (2023). An insight into the role of carbon dots in the agriculture system: a review. Environmental Science: Nano, 10(4), 959-995. DOI: https://doi.org/10.1039/D2EN00954D
Mathew, S., & Mathew, B. (2023). A review on the synthesis, properties, and applications of biomass derived carbon dots. Inorganic Chemistry Communications, 111223. DOI: https://doi.org/10.1016/j.inoche.2023.111223
Murali, S., Khan, R., Gogoi, S., Morchhale, R. K., & Singhal, A. (2022). Future prospects of carbon dots application in agriculture. In Carbon Dots in Agricultural Systems (pp. 263-285). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00011-5
Pete, A. M., Ingle, P. U., Raut, R. W., Shende, S. S., Rai, M., Minkina, T. M., ... & Gade, A. K. (2023). Biogenic synthesis of fluorescent carbon dots (CDs) and their application in bioimaging of agricultural crops. Nanomaterials, 13(1), 209. DOI: https://doi.org/10.3390/nano13010209
Pulizzi, F. (2019). Nano in the future of crops. Nature Nanotechnology, 14, 507. DOI: https://doi.org/10.1038/s41565-019-0475-1
Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A., & Zheng, W. (2020). Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant physiology, 184(2), 647-657. DOI: https://doi.org/10.1104/pp.20.00733
Shaari, N., Kamarudin, S. K., & Bahru, R. (2021). Carbon and graphene quantum dots in fuel cell application: An overview. International Journal of Energy Research, 45(2), 1396-1424. DOI: https://doi.org/10.1002/er.5889
Shojaei, T. R., Salleh, M. A. M., Tabatabaei, M., Mobli, H., Aghbashlo, M., Rashid, S. A., & Tan, T. (2019). Applications of nanotechnology and carbon nanoparticles in agriculture. In Synthesis, technology and applications of carbon nanomaterials (pp. 247-277). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-815757-2.00011-5
Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plan. Applied Nanoscience, 5(5), 609. DOI: https://doi.org/10.1007/s13204-014-0355-9
Tripathi, S., & Sarkar, S. (2022). Carbon dots in agricultural system. In Carbon Dots in Agricultural Systems (pp. 175-197). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00004-8
Wang, B., Huang, J., Zhang, M., Wang, Y., Wang, H., Ma, Y., ... & Kang, Z. (2020). Carbon dots enable efficient delivery of functional DNA in plants. ACS applied bio materials, 3(12), 8857-8864. DOI: https://doi.org/10.1021/acsabm.0c01170
Wang, C., Ji, Y., Cao, X., Yue, L., Chen, F., Li, J., ... & Xing, B. (2022). Carbon dots improve nitrogen bioavailability to promote the growth and nutritional quality of soybeans under drought stress. ACS nano, 16(8), 12415-12424. DOI: https://doi.org/10.1021/acsnano.2c03591
Wang, H., Li, H., Zhang, M., Song, Y., Huang, J., Huang, H., ... & Kang, Z. (2018). Carbon dots enhance the nitrogen fixation activity of Azotobacter chroococcum. ACS applied materials & interfaces, 10(19), 16308-16314. DOI: https://doi.org/10.1021/acsami.8b03758
Wilson, A., Nambiar, A., & Sobha, A. (2023). Synthesis of graphene quantum dots by liquid phase exfoliation method and its applications. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.04.362
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dr. Manoj, Sonu Chauhan

This work is licensed under a Creative Commons Attribution 4.0 International License.
With the licence CC-BY, authors retain the copyright, allowing anyone to download, reuse, re-print, modify, distribute, and/or copy their contribution. The work must be properly attributed to its author.
It is not necessary to ask for further permission from the author or journal board.
This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge.