ROLE OF CARBON DOTS AND THEIR APPLICATIONS IN AGRICULTURE

Authors

  • Manoj Research Scholar Department of Chemistry CCS Haryana Agriculture University, Hisar
  • Dr. Sonu Chauhan Assistant Professor Department of Chemistry CCS Haryana Agriculture University, Hisar

DOI:

https://doi.org/10.29121/shodhkosh.v5.i5.2024.2682

Keywords:

Synthesis, CDs, Nanotechnology, Biocompatibility, Carbon Dioxide, UV Radiation

Abstract [English]

Carbon Dots exhibit exceptional size-dependent optical properties that can be adjusted through surface alterations, thus broadening their applicability across various domains. Furthermore, their facile synthesis, excellent dispersibility, solubility, hydrophilic characteristics, biocompatibility, environmental sustainability, cellular permeability, low toxicity, high photostability, and cost-effectiveness have garnered interest across a wide range of applications, from materials chemistry to nanotechnology.


Carbon Dots have long been utilized as growth enhancers by improving the photosynthesis process in agricultural systems. In this approach, the manufactured Carbon Dots of the specified size are distributed on the plant, where the leaf adsorbs the CDs onto its surface. Consequently, Carbon Dots enhance the absorption rate of sunlight and carbon dioxide. Consequently, the rate of photosynthesis escalates. Consequently, the crop's growth and yield may rise by 10%-20%. Moreover, Carbon Dots possess disease-resistant qualities that safeguard them against many ailments.


The substantial incorporation of Carbon Dots in plants significantly enhances seed germination, root development, leaf quantity, and enzymatic activity for the conversion of CO2 into carbohydrates via an accelerated rate of photosynthesis. Consequently, rice crop productivity rises by 14.8%. Furthermore, it possesses disease resistance that safeguards plants from damage. Moreover, Carbon Dots can transform detrimental UV light into photosynthetically active radiation, hence promoting enhanced plant growth. This study elucidates the physiological roles of carbon dots in crop growth and development, photosynthesis, and their uses in enhancing agriculture.

References

Adam, G. O., Sharker, S. M., & Ryu, J. H. (2022). Emerging biomedical applications of carbon dot and polymer composite materials. Applied Sciences, 12(20), 10565. DOI: https://doi.org/10.3390/app122010565

Aji, M. P., Susanto., Wiguna, P. A., & Sulhadi. (2017). Facile synthesis of luminescent carbon dots from mango-steen peel by pyrolysis method. Journal of Theoretical and Applied Physics, 11(2), 119-126 DOI: https://doi.org/10.1007/s40094-017-0250-3

Alfi, A. A., Alamrani, N. A., Azher, O. A., Snari, R. M., Abumelha, H. M., Al-Ahmed, Z. A., & El-Metwaly, N. M. (2022). Development of carbon dots sensor dipstick from sugarcane bagasse agricultural waste toward all-cellulose-derived tetracycline sensor. Journal of Materials Research and Technology, 19, 4697-4707. DOI: https://doi.org/10.1016/j.jmrt.2022.06.150

Bohlool, B. B., Ladha, J. K., Garrity, D. P., & George, T. (1992). Biological nitrogen fixation for sustainable agriculture: A perspective. Plant and Soil, 141(1), 1. DOI: https://doi.org/10.1007/BF00011307

Bosu, S., Rajamohan, N., Sagadevan, S., & Raut, N. (2023). Biomass derived green carbon dots for sensing applications of effective detection of metallic contaminants in the environment. Chemosphere, 345, 140471. DOI: https://doi.org/10.1016/j.chemosphere.2023.140471

Cramer, G., Urano, K., Delrot, S., et al. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11(1), 163. DOI: https://doi.org/10.1186/1471-2229-11-163

Facure, M. H., Schneider, R., Mercante, L. A., & Correa, D. S. (2020). A review on graphene quantum dots and their nanocomposites: from laboratory synthesis towards agricultural and environmental applications. Environmental Science: Nano, 7(12), 3710-3734. DOI: https://doi.org/10.1039/D0EN00787K

Gogoi, S., Sarmah, J. K., Khan, R., & Murali, S. (2022). Postharvest applications of carbon dots in agriculture: food safety. In Carbon Dots in Agricultural Systems (pp. 241-261). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00006-1

Hallaji, Z., Bagheri, Z., Tavassoli, Z., & Ranjbar, B. (2022). Fluorescent carbon dot as an optical amplifier in modern agriculture. Sustainable Materials and Technologies, 34, e00493. DOI: https://doi.org/10.1016/j.susmat.2022.e00493

Hu, J., Jia, W., Wu, X., Zhang, H., Wang, Y., Liu, J., ... & Wang, X. (2022). Carbon dots can strongly promote photosynthesis in lettuce (Lactuca sativa L.). Environmental Science: Nano, 9(4), 1530-1540. DOI: https://doi.org/10.1039/D1EN00948F

Joshi, B., Khataniar, L., & Bhau, B. S. (2022). Role of carbon dots in agricultural systems: biotechnology and nanotechnology approach. In Carbon Dots in Agricultural Systems (pp. 225-240). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00012-7

Kang, Z., & Lee, S. T. (2019). Carbon dots: advances in nanocarbon applications. Nanoscale, 11(41), 19214-19224. DOI: https://doi.org/10.1039/C9NR05647E

Khan, R., Murali, S., & Gogoi, S. (Eds.). (2022). Carbon Dots in Agricultural Systems: Strategies to Enhance Plant Productivity. Academic Press.

Kou, E., Li, W., Zhang, H., Yang, X., Kang, Y., Zheng, M., ... & Lei, B. (2021). Nitrogen and sulfur co-doped carbon dots enhance drought resistance in tomato and mung beans. ACS Applied Bio Materials, 4(8), 6093-6102. DOI: https://doi.org/10.1021/acsabm.1c00427

Li, G., Xu, J., & Xu, K. (2023). Physiological Functions of Carbon Dots and Their Applications in Agriculture: A Review. Nanomaterials, 13(19), 2684. DOI: https://doi.org/10.3390/nano13192684

Li, Y., Xu, X., Wu, Y., Zhuang, J., Zhang, X., Zhang, H., ... & Liu, Y. (2020). A review on the effects of carbon dots in plant systems. Materials Chemistry Frontiers, 4(2), 437-448. DOI: https://doi.org/10.1039/C9QM00614A

Maholiya, A., Ranjan, P., Khan, R., Murali, S., Nainwal, R. C., Chauhan, P. S., ... & Srivastava, A. K. (2023). An insight into the role of carbon dots in the agriculture system: a review. Environmental Science: Nano, 10(4), 959-995. DOI: https://doi.org/10.1039/D2EN00954D

Mathew, S., & Mathew, B. (2023). A review on the synthesis, properties, and applications of biomass derived carbon dots. Inorganic Chemistry Communications, 111223. DOI: https://doi.org/10.1016/j.inoche.2023.111223

Murali, S., Khan, R., Gogoi, S., Morchhale, R. K., & Singhal, A. (2022). Future prospects of carbon dots application in agriculture. In Carbon Dots in Agricultural Systems (pp. 263-285). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00011-5

Pete, A. M., Ingle, P. U., Raut, R. W., Shende, S. S., Rai, M., Minkina, T. M., ... & Gade, A. K. (2023). Biogenic synthesis of fluorescent carbon dots (CDs) and their application in bioimaging of agricultural crops. Nanomaterials, 13(1), 209. DOI: https://doi.org/10.3390/nano13010209

Pulizzi, F. (2019). Nano in the future of crops. Nature Nanotechnology, 14, 507. DOI: https://doi.org/10.1038/s41565-019-0475-1

Schwartz, S. H., Hendrix, B., Hoffer, P., Sanders, R. A., & Zheng, W. (2020). Carbon dots for efficient small interfering RNA delivery and gene silencing in plants. Plant physiology, 184(2), 647-657. DOI: https://doi.org/10.1104/pp.20.00733

Shaari, N., Kamarudin, S. K., & Bahru, R. (2021). Carbon and graphene quantum dots in fuel cell application: An overview. International Journal of Energy Research, 45(2), 1396-1424. DOI: https://doi.org/10.1002/er.5889

Shojaei, T. R., Salleh, M. A. M., Tabatabaei, M., Mobli, H., Aghbashlo, M., Rashid, S. A., & Tan, T. (2019). Applications of nanotechnology and carbon nanoparticles in agriculture. In Synthesis, technology and applications of carbon nanomaterials (pp. 247-277). Elsevier. DOI: https://doi.org/10.1016/B978-0-12-815757-2.00011-5

Tripathi, S., & Sarkar, S. (2015). Influence of water soluble carbon dots on the growth of wheat plan. Applied Nanoscience, 5(5), 609. DOI: https://doi.org/10.1007/s13204-014-0355-9

Tripathi, S., & Sarkar, S. (2022). Carbon dots in agricultural system. In Carbon Dots in Agricultural Systems (pp. 175-197). Academic Press. DOI: https://doi.org/10.1016/B978-0-323-90260-1.00004-8

Wang, B., Huang, J., Zhang, M., Wang, Y., Wang, H., Ma, Y., ... & Kang, Z. (2020). Carbon dots enable efficient delivery of functional DNA in plants. ACS applied bio materials, 3(12), 8857-8864. DOI: https://doi.org/10.1021/acsabm.0c01170

Wang, C., Ji, Y., Cao, X., Yue, L., Chen, F., Li, J., ... & Xing, B. (2022). Carbon dots improve nitrogen bioavailability to promote the growth and nutritional quality of soybeans under drought stress. ACS nano, 16(8), 12415-12424. DOI: https://doi.org/10.1021/acsnano.2c03591

Wang, H., Li, H., Zhang, M., Song, Y., Huang, J., Huang, H., ... & Kang, Z. (2018). Carbon dots enhance the nitrogen fixation activity of Azotobacter chroococcum. ACS applied materials & interfaces, 10(19), 16308-16314. DOI: https://doi.org/10.1021/acsami.8b03758

Wilson, A., Nambiar, A., & Sobha, A. (2023). Synthesis of graphene quantum dots by liquid phase exfoliation method and its applications. Materials Today: Proceedings. DOI: https://doi.org/10.1016/j.matpr.2023.04.362

Downloads

Published

2024-05-31

How to Cite

Manoj, & Chauhan, S. (2024). ROLE OF CARBON DOTS AND THEIR APPLICATIONS IN AGRICULTURE. ShodhKosh: Journal of Visual and Performing Arts, 5(5), 1047–1053. https://doi.org/10.29121/shodhkosh.v5.i5.2024.2682