A SYSTEMATIC ANALYSIS OF CURRENT DEVELOPMENTS AND POTENTIAL CHALLENGES IN APPLIED DEEP LEARNING-BASED SEED YIELD PREDICTION

Authors

  • Pawan Kumar Gupta Department of Computer Science Engineering, AKS University, Satna
  • Dr. Akhilesh A. Waoo Department of Computer Science Engineering, AKS University, Satna

DOI:

https://doi.org/10.29121/shodhkosh.v5.i5.2024.1890

Keywords:

Deep Learning, Seed Yield Prediction, Agriculture, Crop Management, Precision Agriculture

Abstract [English]

Seed yield prediction is crucial in modern agriculture, aiding farmers and stakeholders in making informed decisions regarding crop management, resource allocation, and harvest planning. Traditionally, seed yield prediction relied on empirical models and historical data, which often lacked accuracy and robustness, particularly in dynamic agricultural environments. However, with the advent of deep learning (DL) techniques, there has been a paradigm shift in seed yield prediction research, enabling the development of sophisticated models capable of analyzing complex spatial and temporal data with unprecedented accuracy.

References

Sordello, R.; Villemey, A.; Jeusset, A.; Vargac, M.; Bertheau, Y.; Coulon, A.; Deniaud, N.; de Lachapelle, F.F.; Guinard, E.; Jactel, H. Conseils Méthodologiques pour la Réalisation D’une Revue Systématique à Travers L’expérience de COHNECS-IT. (2021).

Guoyang Zhao, Longzhe Quan, Hailong Li, Huaiqu Feng, Songwei Li, Shuhan Zhang, and Ruiqi Liu. 2021. The real-time recognition system of soybean seed full-surface defects based on deep learning. Comput. Electron. Agric. 187, 106230, May (2021). DOI: https://doi.org/10.1016/j.compag.2021.106230

Jun Zhang, Limin Dai, and Fang Cheng. 2021. Corn seed variety classification based on hyperspectral reflectance imaging and deep convolutional neural network. J. Food Meas. Charact. 15, 1, 484–494 (2021). DOI: https://doi.org/10.1007/s11694-020-00646-3

Nambiema, A.; Fouquet, J.; Guilloteau, J.; Descatha, A. La revue systématique et autres types de revue de la littérature: Qu’est-ce que c’est, quand, comment, pourquoi? Arch. Des Mal. Prof. L’Environ. 2021, 82, 539–552. (2021) DOI: https://doi.org/10.1016/j.admp.2021.03.004

Ferhat Kurtulmuş. 2020. Identification of sunflower seeds with deep convolutional neural networks. J. Food Meas. Charact. 0123456789 (2020).

Shaolong Zhu, Jinyu Zhang, Maoni Chao, Xinjuan Xu, Puwen Song, Jinlong Zhang, and Zhongwen Huang. 2020. A rapid and highly efficient method for the identification of soybean seed varieties: Hyperspectral images combined with transfer learning. Molecules 25, 1 (2020). DOI: https://doi.org/10.3390/molecules25010152

Te Ma, Satoru Tsuchikawa, and Tetsuya Inagaki. 2020. Rapid and non-destructive seed viability prediction using near-infrared hyperspectral imaging coupled with a deep learning approach. Comput. Electron. Agric.177, April (2020). DOI: https://doi.org/10.1016/j.compag.2020.105683

Aqib Ali, Salman Qadri, Wali Khan Mashwani, Samir Brahim Belhaouari, Samreen Naeem, Sidra Rafique, Farrukh Jamal, Christophe Chesneau, and Sania Anam. 2020. Machine learning approach for the classification of corn seed using hybrid features. Int. J. Food Prop. 23, 1, 1097–1111 (2020). DOI: https://doi.org/10.1080/10942912.2020.1778724

R. Beulah; “A survey on different data mining techniques for crop yield prediction”, Int. J. Comput. Sci. Eng., 7 (1) pp. 738-744 (2019). DOI: https://doi.org/10.26438/ijcse/v7i1.738744

Chao Ni, Dongyi Wang, Robert Vinson, Maxwell Holmes, and Yang Tao. 2019. Automatic inspection machine for maize kernels based on deep convolutional neural networks. Biosyst. Eng. 178, 131–144 (2019). DOI: https://doi.org/10.1016/j.biosystemseng.2018.11.010

Sheng Huang, Xiaofei Fan, Lei Sun, Yanlu Shen, and Xuesong Suo. 2019. Research on Classification Method of Maize Seed Defect Based on Machine Vision. J. Sensors 2019, 1 (2019). DOI: https://doi.org/10.1155/2019/2716975

Pengcheng Nie, Jinnuo Zhang, Xuping Feng, Chenliang Yu, and Yong He. 2019. Classification of hybrid seeds using near-infrared hyperspectral imaging technology combined with deep learning. Sensors Actuators, B Chem. 296, May, 126630 (2019). DOI: https://doi.org/10.1016/j.snb.2019.126630

Siddaway, A.P.; Wood, A.M.; Hedges, L.V. How to do a systematic review: A best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annu. Rev. Psychol. 2019, 70, 747–770. (2019). DOI: https://doi.org/10.1146/annurev-psych-010418-102803

X. Xu, P. Gao, X. Zhu, W. Guo, J. Ding, C. Li, X. Wu; “Design of an integrated climatic assessment indicator (ICAI) for wheat production: a case study in Jiangsu Province” Ecol. Ind., 101, pp. 943-953, (2019). DOI: https://doi.org/10.1016/j.ecolind.2019.01.059

P. Filippi, E.J. Jones, N.S. Wimalathunge, P.D.S.N. Somarathna, L.E. Pozza, S.U. Ugbaje, T.F.A. Bishop; “An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning”, Precis. Agric., 1–15 (2019). DOI: https://doi.org/10.1007/s11119-018-09628-4

Chlingaryan, S. Sukkarieh, B. Whelan; “Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: a review”, Comput. Electron. Agric., 151, pp. 61-69, (2018). DOI: https://doi.org/10.1016/j.compag.2018.05.012

D. Elavarasan, D.R. Vincent, V. Sharma, A.Y. Zomaya, K. Srinivasan; “Forecasting yield by integrating agrarian factors and machine learning models: a survey” Comput. Electron. Agric., 155, pp. 257-282, (2018). DOI: https://doi.org/10.1016/j.compag.2018.10.024

B. Li, J. Lecourt, G. Bishop; “Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of harvest and yield prediction—a review” Plants, 7 (1) (2018). DOI: https://doi.org/10.3390/plants7010003

Balaji Veeramani, John W. Raymond, and Pritam Chanda. 2018. DeepSort: Deep convolutional networks for sorting haploid maize seeds. BMC Bioinformatics 19, Suppl 9 (2018). DOI: https://doi.org/10.1186/s12859-018-2267-2

Douglas F. Pereira, Priscila T.M. Saito, and Pedro H. Bugatti. 2016. An image analysis framework for effective classification of seed damages. Proc. ACM Symp. Appl. Comput. 04-08-Apri, 61–66 (2016). DOI: https://doi.org/10.1145/2851613.2851637

Kantip Kiratiratanapruk and Wasin Sinthupinyo. 2011. Color and texture for corn seed classification by machine vision. 2011 Int. Symp. Intell. Signal Process. Commun. Syst. "The Decad. Intell. Green Signal Process. Commun. ISPACS 2011, 7–11 (2011). DOI: https://doi.org/10.1109/ISPACS.2011.6146100

Pablo M. Granitto, Pablo F. Verdes, and H. Alejandro Ceccatto. 2005. Large-scale investigation of weed seed identification by machine vision. Comput. Electron. Agric. 47, 1, 15–24 (2005). DOI: https://doi.org/10.1016/j.compag.2004.10.003

Waoo, AA, Soni, BK. (2023) Chapter 5 - Recurrent neural network model for identifying neurological auditory disorder, Editor(s): Ajith Abraham, Sujata Dash, Subhendu Kumar Pani, Laura García-Hernández, Artificial Intelligence for Neurological Disorders, Academic Press, 2023, Pages 77-89, ISBN 9780323902779. DOI: https://doi.org/10.1016/B978-0-323-90277-9.00103-6

Downloads

Published

2024-05-31

How to Cite

Gupta, P. K., & Waoo, A. A. (2024). A SYSTEMATIC ANALYSIS OF CURRENT DEVELOPMENTS AND POTENTIAL CHALLENGES IN APPLIED DEEP LEARNING-BASED SEED YIELD PREDICTION. ShodhKosh: Journal of Visual and Performing Arts, 5(5), 397–403. https://doi.org/10.29121/shodhkosh.v5.i5.2024.1890