FLUOROQUINOLONES ANTIBIOTICS ADSORPTION ONTO POLYMER COATED MAGNETIC NANOPARTICULAR ACTIVATED CARBON

Authors

  • Mehmet Uğurlu Department Of Chemistry, Faculty Of Science And Art. Ağrı İbrahim Çeçen University. 04000 Ağrı, Turkey
  • Huseyn Osman Department Of Chemistry. Faculty Of Science And Art. Ağrı İbrahim Çeçen University. 04000 Ağrı. Turkey
  • Ali imran Vaizoğullar Vocational School Healthcare Med Lab Program Muğla Sitki Kocman University 48000 Muğla, Turkey
  • Abdul Chaudhary Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, UB8, 3PH, UK

DOI:

https://doi.org/10.29121/ijoest.v5.i2.2021.172

Keywords:

Activated Carbon, Adsorption, Magnetic Adsorbent, Fluoroquinolone (FLQ), Isotherm

Abstract

The present study investigated the adsorption of molecular fluoroquinolone (FLQ) from  aqueous solution onto active carbon (AC), magnetic activated carbon (MagAC), styrene-butadiene styrene magnetic activated carbon (SBS/MagAC) and poly charbon magnetic activated carbon (PC/MagAC) as adsorbent materials. The process optimization was carried by investigating the effects of pH, temperature, solid-liquid ratio, adsorbent type and initial concentration of FLQ. The data showed that adsorption reached equilibrium in as little as one hour. The adsorption cacapcity was comparatively less at low pH values than at approximately pH 5.0. The results also showed that the polymer coated magnetic materials did not perform very well at high pH values. However, all the materials performed well at room temperature when the situation was examined in terms of kinetics. It was also observed that AC, SBS/MagAC and PC/MagAC are more effective than MagAC to remove FLQ from aqueous medium. The kinetic data support pseudo-second-order model (r2 ⩾ 0.95) but showed very poor fit for pseudo-first-order model (r2 ≤ 0.90). Intra-particle model also showed that there were two separate stages in sorption process, namely, external diffusion and the diffusion of inter-particle. Adsorption isotherms for all adsorbends were fitted to Langmuire models more effectively than Freundlich models (r2 ⩾ 0.98). Thermodynamics parameters such as; free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) were also calculated. In conclusion, our results revealed that FLQ can be removed more easily from the aqueous medium by using magnetic and polymeric material.

Downloads

Download data is not yet available.

References

Murray., A. Örmeci., B. Environ. Sci. Pollut. R (2012) vol 193, p. 820–3830.

Terzić, S., Senta, I., Ahel, M., Gros, M., Petrović, M., Barcelo, D., ... & Jabučar, D. (2008). Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Science of the total environment, 399(1-3, 66-77.

Parshikov á I., Freeman á A. J. P., Williams A. J., Moody á J. D., Sutherland J. B. Appl Microbiol Biotechnol (1999) vol. 52 p. 553-557.

Nieto, J., Freer, J., Contreras, D., Candal, R.J., Sileo, E.E., Mansilla, H.D., J. Hazard. Mater. (2008) vol. 15545 p. 50

Nowara, A., Burhenne, J., Spiteller, M., J. Agr. Food Chem. 1997 vol. 45, p. 1459–1463.

Zhang, H., Huang, CH. Chemosphere (2007) vol. 66 p. 1502–1512.

Sotelo, J.L., Rodríguez, A., Mestanza, M., Díez, S., Álvarez, S., García, J. J. Environ. Sci. Health Part B (2012) vol. 47640 p. 652.

Juan L., Acero, F., Javier Benitez., Francisco J., Real, Fernando Teva, Chemical Engineering Journal 210 (2012)1-8

Zhang, H., & Huang, C. H. Chemosphere, (2007). Vol. 66(8, p. 1502-1512.

Paul, T., Liu, J., Machesky, M. L., & Strathmann, T. J. Journal of colloid and interface science, (2014) vol. 428, p. 63-72.

Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., & García, J. Chemical engineering journal, (2013). Vol. 228, p. 102-113.

Guaita, D. P., Sayen, S., Boudesocque, S., & Guillon, E. Journal of colloid and interface science, (2011) vol. 357(2, p. 453-459.

Álvarez-Torrellas, S., Ribeiro, R. S., Gomes, H. T., Ovejero, G., & García, J. Chemical Engineering Journal, (2016) vol. 296, p. 277-288.

Wang, J., Hu, J., & Zhang, S. Journal of colloid and interface science, (2010) vol. 349(2, p. 578-582.

Adams, C., Wang, Y., Loftin, K., & Meyer, M. (2002) vol. 128(3, p. 253-260.

Asfaram, A., Ghaedi, M., Goudarzi, A., & Rajabi, M. Dalton Transactions, (2015) vol. 44(33, p. 14707-14723.

Shaker, M. A., & Yakout, A. A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2016). Vol. 154, p. 145-156.

Ghaedi, M., Khafri, H. Z., Asfaram, A., & Goudarzi, A. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, (2016) vol. 152, p. 233-240..

Davarnejad, R., & Panahi, P. Separation and Purification Technology, (2016) vol. 158, p. 286-292.

Akın, D., Yakar, A., & Gündüz, U. Synthesis of Magnetic Fe3O4‐Chitosan Nanoparticles by Ionic Gelation and Their Dye Removal Ability. Water Environment Research, (2015). vol. 87(5, p. 425-436.

Bagheri, A. R., Ghaedi, M., Asfaram, A., Bazrafshan, A. A., & Jannesar, R. Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology. Ultrasonics sonochemistry, (2017) vol. 34, p. 294-304.

Bhatia, D., Datta, D., Joshi, A., Gupta, S., & Gote, Y. Adsorption study for the separation of isonicotinic acid from aqueous solution using activated carbon/Fe3O4 composites. (2018). Journal of Chemical & Engineering Data, vol. 63(2, p. 436-445.

Zhang, S., Wang, Z., Chen, H., Kai, C., Jiang, M., Wang, Q., & Zhou, Z. Polyethylenimine functionalized Fe3O4/steam-exploded rice straw composite as an efficient adsorbent for Cr (VI) removal. Applied Surface Science, (2018). Vol. 440, 1p. 277-1285.

Badi, M. Y., Azari, A., Pasalari, H., Esrafili, A., & Farzadkia, M. Modification of activated carbon with magnetic Fe3O4 nanoparticle composite for removal of ceftriaxone from aquatic solutions. Journal of Molecular Liquids, (2018). Vol. 261, p. 146-154.

Wen, T., Wang, J., Yu, S., Chen, Z., Hayat, T., & Wang, X. Magnetic porous carbonaceous material produced from tea waste for efficient removal of As (V, Cr (VI, humic acid, and dyes. ACS Sustainable Chemistry & Engineering, (2017). Vol. 5(5, p. 4371-4380.

Kim, E. A., Seyfferth, A. L., Fendorf, S., & Luthy, R. G. Immobilization of Hg (II) in water with polysulfide-rubber (PSR) polymer-coated activated carbon. water research, (2011). Vol. 45(2, p. 453-460.

Yang, N., Zhu, S., Zhang, D., & Xu, S. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal. Materials Letters, (2008). Vol. 62(4-5, p. 645-647.

Kakavandi, B., Jonidi, A., Rezaei, R., Nasseri, S., Ameri, A., & Esrafily, A. Synthesis and properties of Fe 3 O 4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies. Iranian journal of environmental health science & engineering, (2013). Vol. 10(1, p. 1-9.

Fard, M. A., Vosoogh, A., Barkdoll, B., & Aminzadeh, B. Using polymer coated nanoparticles for adsorption of micropollutants from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2017). Vol. 531, p. 189-197.

Lagergren, S. K. (1898). About the theory of so-called adsorption of soluble substances. Sven. Vetenskapsakad. Handingarl, 24, 1-39.

Ho, Y. S., & McKay, G. Pseudo-second order model for sorption processes. Process biochemistry, (1999). Vol. 34(5, p. 451-465.

Acemioğlu, B. Batch kinetic study of sorption of methylene blue by perlite. Chemical Engineering Journal, (2005). Vol. 106(1, p. 73-81.

Uğurlu, M. Kinetic of the adsorption of reactive dyes by using sepiolite mineral. Microporous and Mesoporous Materials, (2009). Vol. 119, p. 276-283.

Ugurlu, M. Adsorption studies and removal of nitrate from bleached kraft mill effluent by fly-ash and sepiolite. Fresenius Environmental Bulletin, (2009). Vol. 18(12, p. 2328-2335.

Girgis, B. S., Temerk, Y. M., Gadelrab, M. M., & Abdullah, I. D. X-ray diffraction patterns of activated carbons prepared under various conditions. Carbon letters, (2007). Vol. 8(2, p. 95-100.

Vaizoğullar, A. İ. TiO2/ZnO supported on sepiolite: preparation, structural characterization, and photocatalytic degradation of flumequine antibiotic in aqueous solution. Chemical Engineering Communications, (2017). Vol. 204(6, p. 689-697.

Oliveira, G. F. D., Andrade, R. C. D., Trindade, M. A. G., Andrade, H. M. C., & Carvalho, C. T. D. Thermogravimetric and spectroscopic study (TG–DTA/FT–IR) of activated carbon from the renewable biomass source babassu. Química Nova, (2017). Vol .40(3, p. 284-292.

Uğurlu, M., Gürses, A., & Açıkyıldız, M. Comparison of textile dyeing effluent adsorption on commercial activated carbon and activated carbon prepared from olive stone by ZnCl2 activation. Microporous and Mesoporous Materials, (2008). Vol. 111(1-3, p. 228-235.

UĞURLU, M., YILMAZ, S. İ., & VAİZOĞULLAR, A. Removal of Color and COD from Olive Wastewater by Using Three-Phase Three-Dimensional (3D) Electrode Reactor. Materials Today: Proceedings, (2019). Vol. 18, p. 1986-1995.

Mazloomi, F., & Jalali, M. Ammonium removal from aqueous solutions by natural Iranian zeolite in the presence of organic acids, cations and anions. Journal of Environmental Chemical Engineering, (2016). Vol. 4(1, p. 240-249.

Wang, Y., Lu, J., Wu, J., Liu, Q., Zhang, H., & Jin, S. Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar. Sustainability, (2015). Vol. 7(9, p. 12947-12957.

Duan, W., Li, M., Xiao, W., Wang, N., Niu, B., Zhou, L., & Zheng, Y. Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2019). Vol. 574, p. 178-187.

Gu, C., & Karthikeyan, K. G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental science & technology, (2005). Vol. 39(23, p. 9166-9173.

Cao, E., Duan, W., Wang, A., & Zheng, Y. Oriented growth of poly (m-phenylenediamine) on Calotropis gigantea fiber for rapid adsorption of ciprofloxacin. Chemosphere, (2017). Vol. 171, p. 223-230.

Duan, W., Wang, N., Xiao, W., Zhao, Y., & Zheng, Y. Ciprofloxacin adsorption onto different micro-structured tourmaline, halloysite and biotite. Journal of Molecular Liquids, (2018). Vol. 269, p. 874-881.

Van Wieren, E. M., Seymour, M. D., & Peterson, J. W. Interaction of the fluoroquinolone antibiotic, ofloxacin, with titanium oxide nanoparticles in water: adsorption and breakdown. Science of the Total Environment, (2012). Vol. 441, p.1-9.

Wang, B., Jiang, Y. S., Li, F. Y., & Yang, D. Y. Preparation of biochar by simultaneous carbonization, magnetization and activation for norfloxacin removal in water. Bioresource technology, (2017). Vol. 233, p. 159-165.

Yang, W., Lu, Y., Zheng, F., Xue, X., Li, N., & Liu, D. Adsorption behavior and mechanisms of norfloxacin onto porous resins and carbon nanotube. Chemical engineering journal, (2012). Vol. 179, p. 112-118.

Fu, H., Li, X., Wang, J., Lin, P., Chen, C., Zhang, X., & Suffet, I. M. Activated carbon adsorption of quinolone antibiotics in water: Performance, mechanism, and modeling. Journal of environmental sciences, (2017). Vol. 56, p. 145-152.

Wang, F., Yang, B., Wang, H., Song, Q., Tan, F., & Cao, Y. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. Journal of Molecular Liquids, (2016). Vol. 222, p. 188-194.

Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S. M., & Su, X. Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. Journal of colloid and interface science, (2012). Vol. 368(1, p. 540-546.

Tang, Y., Guo, H., Xiao, L., Yu, S., Gao, N., & Wang, Y. Synthesis of reduced graphene oxide/magnetite composites and investigation of their adsorption performance of fluoroquinolone antibiotics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2013). Vol. 424, p. 74-80.

Barbosa, J., Barron, D., Cano, J., Jimenez-Lozano, E., Sanz-Nebot, V., & Toro, I. Evaluation of electrophoretic method versus chromatographic, potentiometric and absorptiometric methodologies for determing pKa values of quinolones in hydroorganic mixtures. Journal of pharmaceutical and biomedical analysis, (2001). Vol. 24(5-6, p. 1087-1098.

Zhang, H., & Huang, C. H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, (2007). Vol. 66(8, p. 1502-1512.

Conkle, J. L., Lattao, C., White, J. R., & Cook, R. L. Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, (2010). Vol. 80(11, p. 1353-1359.

Gu, C., & Karthikeyan, K. G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental science & technology, (2005). Vol. 39(8, p. 2660-2667.

Sotelo, J. L., Ovejero, G., Rodríguez, A., Álvarez, S., & García, J. Analysis and modeling of fixed bed column operations on flumequine removal onto activated carbon: pH influence and desorption studies. Chemical engineering journal, (2013). Vol. 228, p. 102-113.

Ötker, H. M., & Akmehmet-Balcıoğlu, I. Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. Journal of Hazardous Materials, (2005). 122(3, 251-258.

He, X., Wang, B., & Zhang, Q. Phenols removal from water by precursor preparation for MgAl layered double hydroxide: Isotherm, kinetic and mechanism. Materials Chemistry and Physics, (2019). 221, 108-117.

Ahmed, M. J., & Theydan, S. K. Fluoroquinolones antibiotics adsorption onto microporous activated carbon from lignocellulosic biomass by microwave pyrolysis. Journal of the Taiwan Institute of Chemical Engineers, (2014). Vol. 45(1, p. 219-226.

Leal, R. M. P., Alleoni, L. R. F., Tornisielo, V. L., & Regitano, J. B. Sorption of fluoroquinolones and sulfonamides in 13 Brazilian soils. Chemosphere, (2013). Vol. 92(8, p. 979-985.

Ji, L., Chen, W., Duan, L., & Zhu, D. Mechanisms for strong adsorption of tetracycline to carbon nanotubes: a comparative study using activated carbon and graphite as adsorbents. Environmental science & technology, (2009). Vol. 43(7, p. 2322-2327.

Renault, F., Morin-Crini, N., Gimbert, F., Badot, P. M., & Crini, G. Cationized starch-based material as a new ion-exchanger adsorbent for the removal of CI Acid Blue 25 from aqueous solutions. Bioresource technology, (2008). Vol. 99(16, p. 7573-7586.

Duan, W., Li, M., Xiao, W., Wang, N., Niu, B., Zhou, L., & Zheng, Y. Enhanced adsorption of three fluoroquinolone antibiotics using polypyrrole functionalized Calotropis gigantea fiber. Colloids and Surfaces A: Physicochemical and Engineering Aspects, (2019). Vol. 574, p. 178-187.

El Yacoubi, A., Rahali, N., Elmerras, D., Rezzouk, A., & El Idrissi, B. C. Removal of Methylene Blue Dye by Adsorption on Natural Sand. American Journal of Environment and Sustainable Development, (2019). Vol. 4(2, p. 84-88.

Downloads

Published

2021-04-11

How to Cite

Uğurlu, M., Osman, H., Vaizoğullar, A., & Chaudhary, A. (2021). FLUOROQUINOLONES ANTIBIOTICS ADSORPTION ONTO POLYMER COATED MAGNETIC NANOPARTICULAR ACTIVATED CARBON. International Journal of Engineering Science Technologies, 5(2), 81–104. https://doi.org/10.29121/ijoest.v5.i2.2021.172