VALUATION OF EUROPEAN PUT OPTION BY USING THE QUADRATURE METHOD UNDER THE VARIANCE GAMMA PROCESS

  • Akash Singh Research Scholar, Department of Mathematics, Gujarat University, India
  • Ravi Gor Department of Mathematics, Gujarat University, India
  • Rinku Patel P.G. student, Department of Mathematics, Gujarat University, India
Keywords: Variance Gamma Process, Quadrature Method, European Put Option, Geometric Brownian Motion

Abstract

Dynamic asset pricing model uses the Geometric Brownian Motion process. The Black-Scholes model known as standard model to price European option based on the assumption that underlying asset prices dynamic follows that log returns of asset is normally distributed. In this paper, we introduce a new stochastic process called levy process for pricing options. In this paper, we use the quadrature method to solve a numerical example for pricing options in the Indian context. The illustrations used in this paper for pricing the European style option.  We also try to develop the pricing formula for European put option by using put-call parity and check its relevancy on actual market data and observe some underlying phenomenon.

Downloads

Download data is not yet available.

References

Andricopoulos, A. D., Widdicks, M., Duck, P. W., & Newton, D. P. (2003). Universal option valuation using quadrature methods. Journal of Financial Economics, 67(3), 447-471. DOI: https://doi.org/10.1016/S0304-405X(02)00257-X

Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of political economy, 81(3), 637-654. DOI: https://doi.org/10.1086/260062

Sullivan, M. A. (2000). Valuing American put options using Gaussian quadrature. The Review of Financial Studies, 13(1), 75-94. DOI: https://doi.org/10.1093/rfs/13.1.75

Geske, R., & Torous, W. (1991). Skewness, kurtosis, and black-scholes option mispricing. Statistical Papers, 32(1), 299. DOI: https://doi.org/10.1007/BF02925505

Madan, D. B., & Seneta, E. (1990). The variance gamma (VG) model for share market returns. Journal of business, 511-524. DOI: https://doi.org/10.1086/296519

Cont, R., & Tankov, P. (2004). Nonparametric calibration of jump-diffusion option pricing models. DOI: https://doi.org/10.21314/JCF.2004.123

Lindner, A., & Sato, K. I. (2011). Properties of stationary distributions of a sequence of generalized Ornstein–Uhlenbeck processes. Mathematische Nachrichten, 284(17‐18), 2225-2248. DOI: https://doi.org/10.1002/mana.200910223

Permana, F. J. (2014). Valuation of European and American Options under Variance Gamma Process. Journal of Applied Mathematics and Physics, 2(11), 1000. DOI: https://doi.org/10.4236/jamp.2014.211114

Ivanovski, Z., Stojanovski, T., & Narasanov, Z. (2015). Volatility and kurtosis of daily stock returns at MSE. UTMS Journal of Economics, 6(2), 209-221.

Madan, D. B., & Milne, F. (1991). Option pricing with vg martingale components 1. Mathematical finance, 1(4), 39-55. DOI: https://doi.org/10.1111/j.1467-9965.1991.tb00018.x

Published
2020-09-23
How to Cite
Singh, A., Gor, R. G., & Patel, R. (2020). VALUATION OF EUROPEAN PUT OPTION BY USING THE QUADRATURE METHOD UNDER THE VARIANCE GAMMA PROCESS. International Journal of Engineering Science Technologies, 4(5), 1-5. https://doi.org/10.29121/ijoest.v4.i4.2020.101