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ABSTRACT 
This paper introduces an experimental apparatus capable of producing cavitation fusion 
based on laser-assisted high-magnetic-field energy-intensive multifunction cavitation. 
Combining water jet, ultrasonic and magnetic field energy sources has been shown to 
increase the luminescence intensity in this system such that the threshold required for 
deuterium-tritium fusion can be exceeded. The incorporation of a laser provides a further 
improvement in emission intensity based on an increase in the internal temperature of 
bubbles. Multiphoton excitation induced by the laser irradiation raises the pressure 
generated during collisions between bubbles. Consequently, the probability of achieving 
cavitation fusion is greatly enhanced. 
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1. INTRODUCTION 
To date, various methods of cold fusion have been researched and reported. In 

particular, ultrasonic cavitation experiments using tritium and deuterated acetone 
in conjunction with the monitoring of neutron outputs were performed by 
Taleyarkhan et al. (2002). However, other researchers were unable to replicate the 
results of this prior experimentation. Our own group has examined the feasibility of 
bubble nuclear fusion on an experimental and theoretical basis by superimposing 
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magnetic field energy on a water jet Yoshimura et al. (2022a), Yoshimura et al. 
(2022b). This previous research demonstrated the generation of ultra-high-
temperature, ultra-high-pressure cavitation producing the required fusion 
temperature of 1.0 × 108 K Yoshimura et al. (2021a), Yoshimura et al. (2018a), 
Yoshimura et al. (2018b), Yoshimura (2020). The author’s group has also developed 
a laser assisted magnetic field energy intensive multifunction cavitation (LMEI-
MFC) apparatus intended for surface modification of various materials Yoshimura 
et al. (2023).  

The present work reports an apparatus very similar to the previous LMEI-MFC 
fusion instrumentation except for the addition of a vacuum apparatus for the 
purpose of degassing. This system is capable of performing surface modification 
using pure water or tap water. The nozzle diameter in this LMEI-MFC fusion 
apparatus is 0.1 mm, although a large-scale device having a nozzle diameter of 0.8 
mm and a flow rate of 7 L/min has also been constructed. High-temperature, high-
pressure processing using this technique has been shown to impart various 
characteristics to material surfaces in addition to increased strength Yoshimura et 
al. (2021b), Yoshimura et al. (2021c), Yoshimura et al. (2021d), Yoshimura et al. 
(2021e), Ijiri et al. (2022a), Ijiri et al. (2022b), Ijiri et al. (2021a), ljiri et al. (2021b). 
A larger WJ nozzle diameter generates a larger cavitation diameter in the water jet, 
even at a high flow rate. Because deuterated acetone is expensive, this device is also 
designed to use the lowest flow rate possible. A smaller cavitation diameter will 
decrease the impact pressure of the microjet during bubble collapse but this 
pressure can be supplemented by promoting the collision of charged bubbles based 
on the Lorentz force supplied by a magnetic field or by laser-excited multiphoton 
ionization. As such, multi-bubble cavitation fusion utilizing interactions among 
bubbles could possibly be achieved in heavy acetone as an alternative to single-
bubble fusion. 

 
2. MATERIALS AND METHODS  

Figure 1 presents a diagram of the cavitation fusion apparatus developed in this 
research. During the operation of this apparatus, heavy acetone is injected at a high 
pressure of 40 MPa. This heavy acetone cavitation jet is also exposed to ultrasonic 
irradiation. Bubbles inside the jet undergo isothermal expansion at low sound 
pressures but experience rapid adiabatic compression at high sound pressures. The 
repetition of this process of expansion and contraction generates ultra-high-
temperature, high-pressure cavitation. The liquid inside these bubbles 
consequently vaporizes and thermally decomposes such that free deuterium and 
oxygen atoms and ions are generated. Although this process is performed in a 
vacuum, some nitrogen and argon from the ambient air are also included from the 
liquid wall. Despite the high ionization energy of argon, some atoms may be ionized 
as a consequence of the extreme concentration of energy in this system. In the case 
that a number of powerful neodymium magnets are placed around the reaction 
vessel such that a high magnetic field is applied to the jet, the charged bubbles 
experience a Lorentz force and collide with one another at significant velocities. In 
addition, in the case that laser light at a wavelength of 400 or 450 nm is incident on 
the cavitation jet, multiphoton ionization in the interiors of charged bubbles is 
promoted. The synergistic effect obtained from the rapid contraction of the bubbles 
due to adiabatic compression and the high-speed collisions between bubbles 
provides a state in which the pressure and temperature required for nuclear fusion 
are exceeded. Hence, collisions between deuterium (D) atoms are able to generate 
helium (He) atoms, neutrons (n), tritium (T) and protons. Furthermore, when D and 
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T atoms collide, a D-T reaction occurs according to the equation: D + T → 4He + n 
(14 MeV). The neutrons generated in this manner are detected by a neutron counter 
installed at the same position as the photon counter that measures the intensity of 
light emission from bubbles in the standard LMEI-MFC apparatus. The neutron 
particle beam is capable of passing through relatively dense materials such as iron 
but, if the neutron beam stays in the member, γ rays can be generated and so 
precautions must be in place to shield these rays. Therefore, the entire device is 
covered in high-density polyethylene containing diboron trioxide (B203), which has 
a high neutron shielding effect. Regulations require the total effective radiation dose 
to be 1 mSv or less per week. However, the eventual use of this system as a practical 
source of energy would require the kinetic energy of the neutrons being emitted to 
be converted into thermal energy.  
Figure 1

 
Figure 1 The laser-assisted MEI-MFC cavitation fusion apparatus. 

 
In prior work by Taleyarkhan et al., acetone or heavy acetone was irradiated 

with neutrons and the amount of neutrons generated was increased compared with 
the output without neutron irradiation Taleyarkhan et al. (2002), Seife (2002). 
However, it is unclear to what extent factors such as the reflection of the original 
neutron beam were involved. In contrast, in the case of the present LMEI-MFC 
system, a continuous flow of a liquid jet without neutron irradiation provides 
cavitation. It may also be possible to use a mixture of acetone and deuterated 
acetone to study neutron generation purely from multi-bubbles in this system, so as 
to decrease the expense associated with the deuterated solvent. 

Although an experimental approach was not possible in this study, the use of a 
combination of water jet, ultrasonic and magnetic field energy sources in 
conjunction with laser light has been shown to greatly increase the luminescence 
intensity obtained from this apparatus Yoshimura et al. (2023). In addition, 
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multiphoton ionization is induced by the laser irradiation and this effect is expected 
to increase the pressure associated with collisions between bubbles. As a 
consequence, the total energy that could theoretically be obtained may exceed the 
threshold required for the D-T fusion reaction. Experimental verification of this 
possibility is urgently required.  
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