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ABSTRACT 
In this paper, a third-order iterative scheme is presented for searching approximate 
solutions of a non-linear parabolic partial differential equation to simulate the 
elaboration of interest rates in the fanatical application. First, by using Taylor series 
expansion we gain the discretization scheme for the model problem. Then, using the 
Gauss-Seidel iterative scheme we solve the proposed model problems. To validate 
the convergences of the proposed numerical techniques, three model illustrations 
are considered. The convergent analysis of the present techniques is worked by 
supporting the theoretical and fine numerical statements. The accuracy of the 
present numerical techniques has been measured by using average absolute error 
root mean square error and point-wise maximum absolute error. Then, we compare 
these get crimes with the result attained in the literature. These results are also 
presented in tables and graphs. The comparison of physical behavior between 
present numerical versus its exact solutions is also presented in terms of graphs. As 
we can see from the table and graphs, the present numerical techniques approximate 
the exact result veritably well. So, it is relatively effective for simulating fanatical 
application to the non-linear parabolic partial differential equation. 
 
Keywords: Non-Linear Parabolic Equation, Third-Order Iterative Scheme, 
Convergent Analysis 

 
1. INTRODUCTION 

         Partial differential equations arise not only from subfields within 
mathematics such as differential geometry and analysis but also from almost 
every scientific and engineering field as mathematical models of various 
application problems Feng et al. (2013). As the behavior of the solutions 
underlying, these application problems depend on governing partial 
differential equations. So, Solving, analyzing, and implementing the solution 
to these partial differential equations has been critically important for the 
resolutions of many scientific and engineering application problems. 
Concerning different criteria, partial differential equations can be categorized 
into several types.  
         However, using nonlinearity as a criterion, partial differential equations 
can be divided into two categories: linear partial differential equations and 
nonlinear partial differential equations. Evans (1998), Taylor (1996),Taylor 
(1996) . In the nonlinear category, partial differential equations are further 
classified as semi-linear partial differential equations, quasi-linear partial 
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differential equations, and fully non-linear partial differential equations based on 
the degree of the non-linearity. Semi-linear partial differential equations are 
differential equation that is non-linear in the unknown function but linear in all its 
partial derivatives. The non-linear Poisson equation is a well-known example of this 
class of partial differential equations. A quasi-linear partial differential equation is 
non-linear in at least one of the lower order derivatives but linear in the highest 
order derivative of the unknown function Feng et al. (2013).  

 Fully non-linear second-order partial differential equations arise from many 
fields in science and engineering such as astrophysics, antenna design, differential 
geometry, geotropic fluid dynamics, image processing, materials science Ambrosio 
et al. (2001), mathematics and finance Ambrosio et al. (2001), Aliyi et al. (2021) 
mesh generation, meteorology, optimal transport, and stochastic control Ambrosio 
et al. (2001). Various phenomena and applications  Pardoux  (2007), Prevot and 
Rockner (2007) and the references therein with stochastic influence in natural or 
artificial complex systems can be modelled by Stochastic partial differential 
equations, including stochastic quantization of the free Euclidean quantum field, 
turbulence, population dynamics and genetics, neurophysiology, the evolution of 
the curve of interest rate, non-linear filtering, movement by mean curvature in 
random environment, the hydrodynamic limit of particle systems, fluctuations of an 
interface on a wall, and path wise stochastic control theory Li et al. (2021), Alharbi  
(2020). In these fundamental applications, several examples of canonical Stochastic 
partial differential equations arise, such as the Zakai equation, reflected stochastic 
heat equation, stochastic reaction-diffusion equations, stochastic Burger’s equation, 
stochastic Navier–Stokes equation, stochastic porous media equation Li et al. 
(2021), and non-linear advection-diffusion equation. A common example of 
diffusion is given by heat conduction in a solid body Aliyi et al. (2021), Ahmed 
(2017). Conduction comes from molecular collision, transferring heat by kinetic 
energy, without macroscopic material movement Ahmed (2017). The application of 
non-linear partial differential equations is also found as the Black–Scholes model, 
see in Alharbi (2020).  

The stochastic discrimination equation for the CIR garrulousness satisfies the 
Yamada-Watanabe condition, so it admits a unique strong result Gatheral and Taleb 
(2013), Rouah (n.d.). In fine finance, the Cox – Ingersoll – Ross (CIR) model describes 
the elaboration of interest rates. It's a type of short-rate model as it describes 
interest rate movements as driven by only one source of request trouble Orlando et 
al. (2018), Orlando et al. (2019). The model can be used in the evaluation of interest 
rate derivatives. A CIR process is a special case of an introductory affine jump-long-
windedness, which still permits an unrestricted- form expression for bond prices. 
Time-varying functions replacing portions can be introduced in the model to make 
it harmonious with the assigned term structure of interest rates and possibly 
volatilities Orlando et al. (2018),. Also, non-linear equations appear in condensed 
matter, solid-state medicines, fluid mechanics, chemical kinetics, tube medicines, 
non-linear optics, propagation of fluxions in Josephson junctions, the proposition of 
turbulence, ocean dynamics, biophysics star evidence, and multitudinous others 
Maher et al. (2013). This non-linear equation has its own either exact or numerical 
result and these results show the behaviour of governing equation in the result 
intervals.  

In recent years, directly searching either exact or numerical solutions of non-
linear parabolic equations has become more and more attractive parts in different 
branches of physics and applied mathematics. The majority of non-linear parabolic 
partial differential equations do not have analytical solutions. But also, some 
numerical methods have a slow rate of convergence, instability, low accuracy, and 
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difficulty in applying it to implement the simulation of non-linear parabolic partial 
differential equations in complex geometries. Therefore, due to this reason, several 
numerical methods have been developed for investigating the simulation of a non-
linear parabolic equation. For instance, in Nhan et al. (2021), the high-order 
iterative scheme was used for the study of the non-linear pseudo-parabolic 
equation. They apply the Faedo-Galerkin approximation method and use basic 
concepts of non-linear analysis, but grid generation is usually more automatic for 
the Galerkin approximation method, although not completely for complex 
geometries. Also, this iterative scheme is used to search the solution of stochastic 
parabolic equations and study the existence of these solutions in Ngoc et al. (2010), 
Truong et al. (2009), Ahmed  (2017). Thus, they get a better approximation of their 
applied governing problem.  

The stochastic parabolic original value problem also mainly shops and freckled 
to the operation of financial models of the stochastic volatility model. The nontrivial 
point of the equation appears from the non-linear first-order term in spatial variable 
and a Holder, yet not Lipchitz, too rough to be differentiable in space and time. 
Indeed, still, with dropping the quadratic non-linearity from these parabolic partial 
discriminative equations, it's reduced to the stochastic heat equation with the mean-
returning term, whose result is not differentiable Li et al. (2021),. This system does 
not always meet the exact results for coarser step lengths. Every type of finite 
element system depends on the number of grid points. 

 Numerical and analytical techniques for solving conformable parabolic partial 
differential equations and conformable initial boundary value problems also have 
been investigated in Yavuz and Ozdemir (2017), Yavuz (2018) respectively. But the 
conformability transform is not only useful to solve local conformable fractional 
nonlinear dynamical systems of problems. Kocacoban et al. solved the Burgers–
Fisher equation by applying various numerical schemes Kocacoban et al. (2011) that 
showed relatively faster convergence than other plots Lima et al. (2021). The 
collocation method is also a numerical method that the researcher used to obtain 
approximate solutions of non-linear parabolic types of partial differential equations 
in Hepson (2021). Hence, the researchers were developing the high-speed 
computers allows and improvements for the algorithm of several numerical 
methods to solve non-linear parabolic types of partial differential equations on both 
complex domain and complicated boundary conditions in different applications. For 
instance, this powerful series approach was applied by several researchers to find 
the solution of the Burger–Fisher equation, which is called a non-linear Parabolic 
Partial differential equation, see Behzadi and Araghi (2011).  

However, each class of methods offers numerous and, in many ways, 
complementary benefits. Considering previous studies, it has been perceived that 
either analytical or numerical solutions of non-linear parabolic equations are very 
scarce. In the ideal case, we seek a method defined on arbitrary geometries that 
behaves regularly in any dimension and avoids the cost of time-consuming and 
mesh generation. As a result, many investigators have decided to advance too 
accurate and efficient numerical methods. Among those numerical methods, the 
Finite Difference scheme produces potential outcomes and has been widely used 
despite some limitations, such as being unable to obtain the solutions at every single 
point between two grid points. Another drawback is the computational cost to 
obtain higher accuracy of the numerical solution. Motivated by all the above studies, 
we come up with the idea to study the non-linear parabolic partial differential 
equations in one-dimensional space. Therefore, the main goal of this paper is to 
apply Guess-seidel iterative method to approximate the solution of the Non-linear 
parabolic partial differential equation and searching the results with its accuracy 
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increases through iterative steps. The convergence of the present numerical scheme 
has been measured in the sense of average absolute error (AAE), maximum point-
wise absolute error (𝐿𝐿∞), and root mean square error (𝐿𝐿2). The stability and 
confluence of the present techniques are also delved by using Von Neumann 
stability analysis techniques. In this paper, we consider the non-linear parabolic 
partial differential equation given by: 

 
           𝑈𝑈𝑡𝑡 = 𝑈𝑈𝑥𝑥𝑥𝑥 + 𝐺𝐺(𝑥𝑥, 𝑡𝑡,𝑈𝑈),       (𝑎𝑎, 𝑏𝑏) × (0,𝑇𝑇)                                             Equation 1 
 
Subjected to both initial and boundary conditions are given by: 
 
                            𝑈𝑈(𝑥𝑥, 0) = 𝑈𝑈0(𝑥𝑥) ,𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏 
 
              𝑈𝑈(𝑎𝑎, 𝑡𝑡) = 𝑈𝑈𝑎𝑎(𝑡𝑡),𝑈𝑈(𝑏𝑏, 𝑡𝑡) = 𝑈𝑈𝑏𝑏(𝑡𝑡),  0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                                  Equation 2 
 
where 𝛼𝛼 is arbitrary constant and 𝐺𝐺(𝑈𝑈), 𝑈𝑈0(𝑥𝑥), 𝑈𝑈𝑎𝑎(𝑡𝑡), & 𝑈𝑈𝑏𝑏(𝑡𝑡)  are smooth 

function in  [𝑎𝑎, 𝑏𝑏] × [0,𝑇𝑇]. This smoothness of this function is used for the existence 
of solutions in the domain. Moreover, the existence of solution of non-linear partial 
differential equation in the solution domain is studded in the references Ngoc et al. 
(2010), Truong et al. (2009), Ahmed (2017). To find the solution in this paper, the 
rectangular domain can be partitioned into sub-intervals given by: 

 
                                                                         𝑎𝑎 = 𝑥𝑥0 < 𝑥𝑥1 < 𝑥𝑥2 < ⋯ < 𝑥𝑥𝑀𝑀𝑥𝑥 = 𝑏𝑏,  0 = 𝑡𝑡0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ < 𝑡𝑡𝑁𝑁𝑡𝑡 = 𝑇𝑇          Equation 3 

                                                                
where 𝑥𝑥𝑗𝑗+1 = 𝑥𝑥𝑗𝑗 + 𝑗𝑗ℎ,  & 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + 𝑛𝑛∆𝑡𝑡, where  𝑗𝑗 = 0(1)𝑀𝑀𝑥𝑥  & 𝑛𝑛 = 0(1)𝑁𝑁 . 

𝑀𝑀𝑥𝑥 & 𝑁𝑁𝑡𝑡 are the maximum numbers of grid points respectively in the x and t 
direction. Therefore, this paper is organized as follows. Section two is a description 
of the numerical scheme, section three is confluence analysis, and section four is the 
results of numerical experiments. Section five is Discussions of numerical 
experiments; section six is the conclusion.  

 
2. DESCRIPTION OF NUMERICAL SCHEME  
Recall that non-linear parabolic partial differential equation in Equation 1 with 

their initial and boundary condition in Equation 2 and we want to approximate 
solution in the rectangular domain [𝑎𝑎, 𝑏𝑏] × [0,𝑇𝑇]. Now to approximate this model 
problem, first, we want to discretize its derivative concerning in both temporal 
variable 𝑡𝑡 and spatial variable 𝑥𝑥 by using Taylor series expiation. 

 
2.1. DISCRETIZATION OF TEMPORAL DERIVATIVE 
Assume that 𝑈𝑈(𝑥𝑥, 𝑡𝑡) has continuous higher order partial derivative on its 

domain. Now, let us consider that 𝑈𝑈(𝑥𝑥, 𝑡𝑡𝑛𝑛) = 𝑈𝑈𝑛𝑛, 𝜕𝜕
𝑝𝑝𝑈𝑈(𝑥𝑥,   𝑡𝑡𝑛𝑛)
𝜕𝜕𝑡𝑡𝑝𝑝

= 𝜕𝜕𝑡𝑡
𝑝𝑝𝑈𝑈𝑛𝑛 where 𝑝𝑝 ≥ 1 

which we call,  𝑝𝑝𝑡𝑡ℎ order partial derivative of 𝑈𝑈 concerning spatial variable  𝑥𝑥. Now 
the Taylor series expansions of 𝑈𝑈 𝑛𝑛+1, 𝑈𝑈 𝑛𝑛−1, 𝑈𝑈 𝑛𝑛+2  and 𝑈𝑈𝑗𝑗 𝑛𝑛−2 about (𝑥𝑥, 𝑡𝑡𝑛𝑛) given by 

 

                                                                               𝑈𝑈𝑛𝑛+1 = 𝑈𝑈𝑛𝑛 + ∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + ∆𝑡𝑡2

2!
𝜕𝜕𝑡𝑡2𝑈𝑈𝑛𝑛 + ∆𝑡𝑡3

3!
𝜕𝜕𝑡𝑡 
3𝑈𝑈𝑛𝑛 + ∆𝑡𝑡4

4!
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 + ⋯                Equation 4 

 

                                                                              𝑈𝑈𝑛𝑛−1 = 𝑢𝑢𝑛𝑛 − ∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + ∆𝑡𝑡2

2!
𝜕𝜕𝑡𝑡2𝑈𝑈𝑛𝑛 −

∆𝑡𝑡3

3!
𝜕𝜕𝑡𝑡 
3𝑈𝑈𝑛𝑛 + ℎ4

4!
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 + ⋯                 Equation 5 
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                                                                             𝑈𝑈𝑛𝑛+2 = 𝑈𝑈𝑛𝑛 + 2∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + 4∆𝑡𝑡2

2!
𝜕𝜕𝑡𝑡2𝑈𝑈𝑛𝑛 + 8∆𝑡𝑡3

3!
𝜕𝜕𝑡𝑡 
3𝑈𝑈𝑛𝑛 + 16∆𝑡𝑡4

4!
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 + ⋯       Equation 6 

 

                                                                            𝑈𝑈𝑛𝑛−2 = 𝑈𝑈𝑛𝑛 − 2∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + 4∆𝑡𝑡2

2!
𝜕𝜕𝑡𝑡2𝑈𝑈𝑛𝑛 −

8∆𝑡𝑡3

3!
𝜕𝜕𝑡𝑡 
3𝑈𝑈𝑛𝑛 + 16∆𝑡𝑡4

4!
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 + ⋯         Equation 7 

   
The first and second-order finite difference scheme for first, second, and third-

order partial derivative concerning with temporal variable is 
 

          𝜕𝜕𝑡𝑡𝑈𝑈 = 𝑈𝑈𝑛𝑛+1−𝑈𝑈𝑛𝑛
∆𝑡𝑡

− ∆𝑡𝑡
2
𝜕𝜕𝑡𝑡 
2𝑈𝑈𝑛𝑛 ,  𝜕𝜕𝑡𝑡𝑡𝑡𝑈𝑈 = 𝑈𝑈𝑛𝑛+1−2𝑈𝑈𝑛𝑛+𝑈𝑈𝑛𝑛−1

∆𝑡𝑡2
− ∆𝑡𝑡2

12
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛  

 

                  𝜕𝜕𝑡𝑡𝑡𝑡𝑡𝑡𝑈𝑈 = 𝑈𝑈𝑛𝑛+2−2𝑈𝑈𝑛𝑛+1+2𝑈𝑈𝑛𝑛−1−𝑈𝑈𝑛𝑛−2
2∆𝑡𝑡3

− 4∆𝑡𝑡2

15
𝜕𝜕𝑡𝑡 
5𝑈𝑈𝑛𝑛                                      Equation 8 

 
Now combining Equation 4, Equation 5, and Equation 7 we obtain  
 

 𝑈𝑈𝑛𝑛+1 +  𝑈𝑈𝑛𝑛−1 +  𝑈𝑈𝑛𝑛−2 =  3𝑈𝑈𝑛𝑛 − 2∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + 3∆𝑡𝑡2𝜕𝜕𝑡𝑡2𝑈𝑈𝑛𝑛 −
4∆𝑡𝑡3

3
𝜕𝜕𝑡𝑡 
3𝑈𝑈𝑛𝑛 +

18∆𝑡𝑡4

24
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 + ⋯ 

 
Using Equation 8 in this difference in terms of second and third-order partial 

derivative we obtain 
 

 𝑈𝑈𝑛𝑛+1 +  𝑈𝑈𝑛𝑛−1 +  𝑈𝑈𝑛𝑛−2 =  3𝑈𝑈𝑛𝑛 − 2∆𝑡𝑡𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 + 3∆𝑡𝑡2 �
𝑈𝑈𝑛𝑛+1 − 2𝑈𝑈𝑛𝑛 + 𝑈𝑈𝑛𝑛−1

∆𝑡𝑡2
−
∆𝑡𝑡2

12
𝜕𝜕𝑡𝑡4𝑈𝑈𝑛𝑛 � – 

 
4∆𝑡𝑡3

3
�
𝑈𝑈𝑛𝑛+2 − 2𝑈𝑈𝑛𝑛+1 + 2𝑈𝑈𝑛𝑛−1 − 𝑈𝑈𝑛𝑛−2

2∆𝑡𝑡3
−

4∆𝑡𝑡2

15
𝜕𝜕𝑡𝑡 
5𝑈𝑈𝑛𝑛� +

18∆𝑡𝑡4

24
𝜕𝜕𝑡𝑡 
4𝑢𝑢𝑛𝑛 + ⋯ 

 
This implies that: 
 

𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 =
1

6∆𝑡𝑡
[−2𝑈𝑈𝑛𝑛+2 + 10𝑈𝑈𝑛𝑛+1 − 9𝑈𝑈𝑛𝑛 + 2𝑈𝑈𝑛𝑛−1 + 𝑈𝑈𝑛𝑛−2] +

11∆𝑡𝑡3

36
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛 

 
Simplifying the difference result, we obtain the third-order finite difference 

scheme for the first-order finite difference scheme of the form 
 

                                                                         𝜕𝜕𝑡𝑡𝑈𝑈𝑛𝑛 = 1
6∆𝑡𝑡

[−2𝑈𝑈𝑛𝑛+2 + 10𝑈𝑈𝑛𝑛+1 − 9𝑈𝑈𝑛𝑛 + 2𝑈𝑈𝑛𝑛−1 + 𝑈𝑈𝑛𝑛−2]𝑗𝑗 + 𝐸𝐸1                      Equation 9 
 

where    𝜏𝜏1 =   11∆𝑡𝑡
3

36
𝜕𝜕𝑡𝑡 
4𝑈𝑈𝑛𝑛   is its maximum local truncation error term? 

 
2.2. DISCRETIZATION OF SPATIAL DERIVATIVE 
Whit-out losing generality, the discretization of temporally derivative by using 

Taylor series expiation given by: 
 

                                                                                𝑈𝑈𝑗𝑗+1 = 𝑈𝑈𝑗𝑗 + �𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 + ℎ2

2!
𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 + ℎ3

3!
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 + ℎ4

4!
𝜕𝜕𝑥𝑥 
4𝑈𝑈𝑗𝑗 + ⋯                     Equation 10 
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                                                                               𝑈𝑈𝑗𝑗−1 = 𝑈𝑈𝑗𝑗 − ℎ𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 + ℎ2

2!
𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 −

ℎ3

3!
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 + ℎ4

4!
𝜕𝜕𝑥𝑥 
4𝑈𝑈𝑗𝑗 + ⋯                        Equation 11 

 

                                                                        𝑈𝑈𝑗𝑗+2 = 𝑈𝑈𝑗𝑗 + 2�𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 + 4ℎ2

2!
𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 + 8ℎ3

3!
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 + 16ℎ4

4!
𝜕𝜕𝑥𝑥 
4𝑈𝑈𝑗𝑗 + ⋯                    Equation 12 

 

                                                                        𝑈𝑈𝑗𝑗−2 = 𝑈𝑈𝑗𝑗 − 2ℎ𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 + 4ℎ2

2!
𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 −

8ℎ3

3!
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 + 16ℎ4

4!
𝜕𝜕𝑥𝑥 
4𝑈𝑈𝑗𝑗 + ⋯                    Equation 13 

                          
Now using Equation 10, Equation 13, the second-order finite difference scheme 

for first and second-order partial derivative concerning spatial derivative is given 
by: 

 

           𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 = 𝑈𝑈𝑗𝑗+1−𝑈𝑈𝑗𝑗−1
2�

− ℎ2

6
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 −

ℎ2

120
𝜕𝜕𝑥𝑥 
5𝑈𝑈𝑗𝑗 −⋯                                   Equation 14 

 
 

           𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 = 𝑈𝑈𝑗𝑗+1−2𝑈𝑈𝑗𝑗+𝑈𝑈𝑗𝑗−1
�2

− ℎ2

12
𝜕𝜕𝑥𝑥 
4𝑢𝑢𝑗𝑗 −

ℎ2

720
𝜕𝜕𝑥𝑥 
6𝑢𝑢𝑗𝑗 −⋯                           Equation 15 

 
 

         𝜕𝜕𝑥𝑥3𝑈𝑈𝑗𝑗 = 𝑈𝑈𝑗𝑗+1−2𝑈𝑈𝑗𝑗+1+2𝑈𝑈𝑗𝑗−1+𝑈𝑈𝑗𝑗−1
2�3

− 4ℎ2

15
𝜕𝜕𝑥𝑥 
2𝑢𝑢𝑗𝑗 −⋯                                  Equation 16 

 
 

        𝜕𝜕𝑥𝑥4𝑈𝑈𝑗𝑗 = 𝑈𝑈𝑗𝑗+2−4𝑈𝑈𝑗𝑗+1+6𝑈𝑈𝑗𝑗−4𝑈𝑈𝑗𝑗−1−𝑈𝑈𝑗𝑗−2
�4

− 13ℎ2

72
𝜕𝜕𝑥𝑥 
6𝑢𝑢𝑗𝑗 −⋯                         Equation 17 

 
 
Without losing generality, combining Eqs. Equation 10, Equation 11, and 

Equation 13, we obtain the differential equation given by: 
 

 𝑈𝑈𝑗𝑗+1 + 𝑈𝑈𝑗𝑗−1 + 𝑈𝑈𝑗𝑗−2 = 3𝑈𝑈𝑗𝑗 − 2ℎ𝜕𝜕𝑥𝑥𝑈𝑈𝑗𝑗 +
6�2

2
𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 −

8ℎ3

6
𝜕𝜕𝑥𝑥 
3𝑈𝑈𝑗𝑗 +

34�4

24
𝜕𝜕𝑥𝑥 
4𝑈𝑈𝑗𝑗 −

32ℎ5

120
𝜕𝜕𝑥𝑥 
5𝑈𝑈𝑗𝑗 +

130
720

𝜕𝜕𝑥𝑥 
6𝑈𝑈𝑗𝑗 + ⋯ 

 

Substituting Equation 14 into this difference equation, we obtain: 
 

−3ℎ2𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 =
1
4
𝑈𝑈𝑗𝑗+2 − 4𝑈𝑈𝑗𝑗+1 +

15
2
𝑈𝑈𝑗𝑗 − 4𝑈𝑈𝑗𝑗−1 +

1
4
𝑈𝑈𝑗𝑗−2 +

2ℎ5

15
𝜕𝜕𝑥𝑥 
5𝑈𝑈𝑗𝑗 

 

Now multiplying both sides − 1
3ℎ2 and simplifying the result, we obtain: 

 

𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 =
1

12ℎ2
�−𝑈𝑈𝑗𝑗+2 + 16𝑈𝑈𝑗𝑗+1 − 30𝑈𝑈𝑗𝑗 + 16𝑈𝑈𝑗𝑗−1 − 𝑈𝑈𝑗𝑗−2�𝑛𝑛 −

2ℎ3

45
𝜕𝜕𝑥𝑥 
5𝑈𝑈𝑗𝑗 

 
By truncating the last (truncation) error terms from this difference scheme, we 

obtain a third-order central difference scheme for the second-order partial 
derivative of the model problem is given by:   
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                                                                    𝜕𝜕𝑥𝑥2𝑈𝑈𝑗𝑗 = 1

12ℎ2
�−𝑈𝑈𝑗𝑗+2 + 16𝑈𝑈𝑗𝑗+1 − 30𝑈𝑈𝑗𝑗 + 16𝑈𝑈𝑗𝑗−1 − 𝑈𝑈𝑗𝑗−2�𝑛𝑛 + 𝐸𝐸2                  Equation 18 

 

where 𝜏𝜏2 = −2ℎ3

45
𝜕𝜕𝑥𝑥 
5𝑈𝑈𝑗𝑗 is their maximum local truncation error term? 

 
Now substituting Equation 9, Equation 18 into Equation 1 we obtain the 

difference scheme: 
 

1
6∆𝑡𝑡

�
−2𝑈𝑈𝑗𝑗𝑛𝑛+2 + 10𝑈𝑈𝑗𝑗𝑛𝑛+1 −
9𝑈𝑈𝑗𝑗𝑛𝑛 + 2𝑈𝑈𝑗𝑗𝑛𝑛−1 + 𝑈𝑈𝑗𝑗𝑛𝑛−2

� =
1

12ℎ2
�

−𝑈𝑈𝑗𝑗+2𝑛𝑛 + 16𝑈𝑈𝑗𝑗+1𝑛𝑛 −
30𝑈𝑈𝑗𝑗𝑛𝑛 + 16𝑈𝑈𝑗𝑗−1𝑛𝑛 − 𝑈𝑈𝑗𝑗−2𝑛𝑛

� + 𝐺𝐺(𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑛𝑛,𝑈𝑈𝑗𝑗𝑛𝑛) 

 
This implies that: 
 

         4𝑈𝑈𝑗𝑗𝑛𝑛+2 − 20𝑈𝑈𝑗𝑗𝑛𝑛+1 + 18𝑈𝑈𝑗𝑗𝑛𝑛 − 4𝑈𝑈𝑗𝑗𝑛𝑛−1 − 2𝑈𝑈𝑗𝑗𝑛𝑛−2 = 𝜇𝜇 �
𝑈𝑈𝑗𝑗+2𝑛𝑛 −

16𝑈𝑈𝑗𝑗+1𝑛𝑛 + 30𝑈𝑈𝑗𝑗𝑛𝑛 − 16𝑈𝑈𝑗𝑗−1𝑛𝑛 + 𝑈𝑈𝑗𝑗−2𝑛𝑛
� − 12∆𝑡𝑡𝐺𝐺(𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑛𝑛 ,𝑈𝑈𝑗𝑗𝑛𝑛)       

                                  

where 𝜇𝜇 = ∆𝑡𝑡
ℎ2

 . Then we can rewrite the iterative scheme by using the Gauss-
seidel iterative scheme as a form of: 

 
𝛼𝛼𝑈𝑈𝑗𝑗 𝑛𝑛

(𝑘𝑘+1) − 4𝑈𝑈𝑗𝑗 𝑛𝑛−1
(𝑘𝑘+1) − 2𝑈𝑈𝑗𝑗 𝑛𝑛−2

(𝑘𝑘+1) = −4𝑈𝑈𝑗𝑗 𝑛𝑛+2
(𝑘𝑘) + 20𝑈𝑈𝑗𝑗 𝑛𝑛+1

(𝑘𝑘) + 𝜇𝜇�𝑈𝑈𝑗𝑗+2 𝑛𝑛
(𝑘𝑘) − 16𝑈𝑈𝑗𝑗+1 𝑛𝑛

(𝑘𝑘) −
16𝑈𝑈𝑗𝑗−1 𝑛𝑛

(𝑘𝑘) + 𝑈𝑈𝑗𝑗−2 𝑛𝑛
(𝑘𝑘) � + 12∆𝑡𝑡𝐺𝐺(𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑛𝑛,𝑈𝑈𝑗𝑗𝑛𝑛

(𝑘𝑘))   

 
where 𝛼𝛼 = 18 − 30𝜇𝜇 and 𝑘𝑘 = 1,2,3, …. From this scheme, we can rewrite this, 

into the embedded matrix form of Gauss-seidel iterative scheme: 
 
           (𝐿𝐿 + 𝐷𝐷)𝑈𝑈𝑗𝑗 

(𝑘𝑘+1) = 𝑈𝑈�𝑈𝑈𝑗𝑗 
(𝑘𝑘) + 𝑏𝑏𝑗𝑗 

(𝑘𝑘)                                                           Equation 19 
 
Where 𝐿𝐿 ,𝐷𝐷 and 𝑈𝑈� are lower, diagonal, and an upper triangular matrix is 

respectively given by: 
 

𝐿𝐿 =

⎣
⎢
⎢
⎢
⎡

0 0 0
−4 0 0
−2 −4 0

⋯
0 0
0 0
0 0

⋮ ⋱ ⋮
0 0 0 ⋯ −2 0⎦

⎥
⎥
⎥
⎤
, 𝐷𝐷 =

⎣
⎢
⎢
⎢
⎡
𝛼𝛼 0 0
0 𝛼𝛼 0
−0 0 𝛼𝛼

⋯
0 0
0 0
0 0

⋮ ⋱ ⋮
0 0 0 ⋯ 0 𝛼𝛼⎦

⎥
⎥
⎥
⎤
 and  𝑈𝑈� =

⎣
⎢
⎢
⎢
⎡
 0 20 −4

0 0 20
0 0 0

⋯
0 0
0 0
0 0

⋮ ⋱ ⋮
0 0 0 ⋯ 0 0⎦

⎥
⎥
⎥
⎤
 

 
And 
 
𝑏𝑏𝑗𝑗 

(𝑘𝑘) = 𝜇𝜇 �𝑈𝑈𝑗𝑗+2 𝑛𝑛
(𝑘𝑘) − 16𝑈𝑈𝑗𝑗+1 𝑛𝑛

(𝑘𝑘) − 16𝑈𝑈𝑗𝑗−1 𝑛𝑛
(𝑘𝑘) + 𝑈𝑈𝑗𝑗−2 𝑛𝑛

(𝑘𝑘) � + 12∆𝑡𝑡𝐺𝐺 �𝑥𝑥𝑗𝑗 , 𝑡𝑡𝑛𝑛,𝑈𝑈𝑗𝑗𝑛𝑛
(𝑘𝑘)� − 4𝑈𝑈𝑗𝑗 𝑁𝑁𝑡𝑡+1

(𝑘𝑘) +

20𝑈𝑈𝑗𝑗 𝑁𝑁𝑡𝑡+2
(𝑘𝑘) + 4𝑈𝑈𝑗𝑗 ,0

(𝑘𝑘+1) + 2𝑈𝑈𝑗𝑗,−1
(𝑘𝑘+1) + 2𝑈𝑈𝑗𝑗,0

(𝑘𝑘+1)                                                                       Equation 20 
 

Where  𝜏𝜏𝑗𝑗𝑛𝑛 = �2ℎ
3

45 𝜕𝜕𝑥𝑥 
5 − 11∆𝑡𝑡3

36 𝜕𝜕𝑡𝑡 
4
�𝑈𝑈𝑗𝑗𝑛𝑛  is a local truncation error? Hence, 

the simplified form of Guess-seidel iterative scheme is: 
 
                              𝑈𝑈𝑗𝑗 

(𝑘𝑘+1) = 𝐴𝐴𝑈𝑈𝑗𝑗 
(𝑘𝑘) + 𝐵𝐵𝑗𝑗                                                           Equation 21 
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where 𝐴𝐴 = (𝐿𝐿 + 𝐷𝐷)−1𝑈𝑈� and 𝐵𝐵𝑗𝑗 = (𝐿𝐿 + 𝐷𝐷)−1𝑏𝑏𝑗𝑗 

(𝑘𝑘) 
Thus, using Guess-seidel iterative scheme in Equation 18 by rewriting MATLAB 

program, we obtain the solution of model problem and validity of proposed 
numerical scheme. 

 
3. CONSISTENCY AND CONVERGENCE ANALYSIS 
3.1. THE CONSISTENCY OF THE PROPOSED SCHEME 
Since from the general iterative scheme, local truncation error is 𝜏𝜏𝑗𝑗𝑛𝑛 =

�2ℎ
3

45
𝜕𝜕𝑥𝑥 
5 − 11∆𝑡𝑡3

36
𝜕𝜕𝑡𝑡 
4�𝑈𝑈𝑗𝑗𝑛𝑛. Hence by using the definition referenced in Morton and 

Mayers (2005), we have:  
 

lim
ℎ,∆𝑡𝑡→0

�
2αh3

45
∂x 
5 −

11∆t3

36
∂t 4� = lim

𝑀𝑀𝑥𝑥,𝑁𝑁𝑡𝑡→∞
�𝜏𝜏𝑗𝑗𝑛𝑛� ≅ 0 

 
Hence this indicated that, as simultaneously both step-length and time step 

approach to zero (i.e  ℎ,∆𝑡𝑡 → 0), the truncation error in difference scheme is 
approximate to zero (i.e.,ℎ,∆𝑡𝑡 → 0, 𝜏𝜏𝑗𝑗𝑛𝑛 → 0). So, this shows that, the above iterative 
scheme is consistent. 

 
3.2. CONVERGENCE ANALYSIS 
The convergence of the proposed numerical method is investigated by using 

matrix form convergence analysis. Such an approach has been used in many 
textbooks and different recent articles. As it worked in reference Mohanty and Jha 
(2005), JAIN et al. (1984) assume that 𝑈𝑈𝑗𝑗 = [𝑈𝑈1,𝑈𝑈1, … . ,𝑈𝑈𝑀𝑀𝑥𝑥]𝑡𝑡   is the exact solution 
of the problem in Equation 1 and it can be a writer as: 

 
                               𝑈𝑈𝑗𝑗 = 𝐴𝐴𝑈𝑈𝑗𝑗 + 𝐵𝐵𝑗𝑗                                                                       Equation 22 
 
Subtraction Eq. Equation 21 form Eq. Equation 22 and substituting ∈(𝑘𝑘)= 𝑈𝑈 −

𝑈𝑈𝑗𝑗𝑘𝑘 , we obtain: 
 
                             ∈(𝑘𝑘+1)= 𝐴𝐴𝑘𝑘 ∈(𝑘𝑘)                                                                   Equation 23 
 
where 𝑘𝑘 = 1,2,3, …. and it follows that   ∈(𝑘𝑘)= 𝐴𝐴𝑘𝑘 ∈(0).   ∈= [∈1, ∈2,

∈3, … . . ,∈𝑀𝑀𝑥𝑥]𝑡𝑡 . Since in our work we follow that error produced in this scheme is 
less-than principal local truncation error produced in sequences of the scheme. It 
means that �   ∈𝑗𝑗

(𝑘𝑘)� ≪ 𝜏𝜏𝑗𝑗(ℎ,∆𝑡𝑡) where is maximum local truncation error term at 𝑗𝑗𝑡𝑡ℎ  
point. This shows the stability of the scheme. Now assuming that matrix 𝐴𝐴 is 
irreducible and monotone Mohanty and Jha (2005),. This shows that the inverse of 
A exists, and its elements are nonnegative. Hence, using matrix norm, from Equation 
23, we get 

 
�∈𝒋𝒋� ≪ ‖𝑨𝑨‖. ‖𝜏𝜏(ℎ,∆𝑡𝑡)‖ 
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Thus, we define the norms of the matrix as constant which is given by  Κ =
‖𝑨𝑨‖ = max

𝒋𝒋
∑ |𝑎𝑎 𝑙𝑙𝑗𝑗 |𝑀𝑀𝑥𝑥
𝑗𝑗=1    

 
where 𝐴𝐴 = �𝑎𝑎 𝑙𝑙𝑗𝑗 � and norm of truncation error ‖𝜏𝜏(ℎ,∆𝑡𝑡)‖ = max

𝑗𝑗
�𝜏𝜏𝑗𝑗(ℎ,∆𝑡𝑡)�. 

Therefore, we have   
 
                                           �∈𝑗𝑗� ≪ Κmax

𝑗𝑗
�𝜏𝜏𝑗𝑗(ℎ,∆𝑡𝑡)�  

 
However, all error in the scheme is bounded. Thus, we have ‖∈‖ ≪

𝑂𝑂(ℎ3 + ∆𝑡𝑡3).  
Theorem 1: Let 𝐴𝐴 in Equation 23 be a square matrix and 𝜆𝜆𝑗𝑗  is distinct 

Eigenvalue of matrix A. Then lim
𝑘𝑘→∞

𝐴𝐴𝑘𝑘 = 0 if ‖𝐴𝐴‖ < 1 or 𝜌𝜌(𝐴𝐴) < 1 where 𝜌𝜌(𝐴𝐴) is the 
spectral radius of matrix A and 𝜌𝜌(𝐴𝐴) = max

𝑗𝑗
(𝜆𝜆𝑗𝑗).  

 

Proof: If  ‖𝐴𝐴‖ < 1, we have �𝐴𝐴𝑘𝑘� ≤ ‖𝐴𝐴‖𝑘𝑘  and � lim
𝑘𝑘→∞

𝐴𝐴𝑘𝑘� ≤ � lim
𝑘𝑘→∞

𝐴𝐴�
𝑘𝑘

= 0. For 
simplicity, assume that all the eigenvalues of A are distinct. Then, there exists a 
similarity transformation P, such that 𝐴𝐴 = 𝑃𝑃𝐷𝐷𝑃𝑃−1 where D is the diagonal matrix 
having the eigenvalues of A on the diagonal. Therefore, 𝐴𝐴𝑘𝑘 = 𝑃𝑃𝐷𝐷𝑘𝑘𝑃𝑃−1 and  

 

𝐷𝐷𝑘𝑘 =

⎣
⎢
⎢
⎡𝜆𝜆1
𝑘𝑘 0

0 𝜆𝜆2𝑘𝑘
⋯ 0

⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝜆𝑀𝑀𝑥𝑥𝑘𝑘 ⎦

⎥
⎥
⎤
 

 
This is implying  lim

𝑘𝑘→∞
𝐴𝐴𝑘𝑘 = 0 if and only if all Eigenvalue of A satisfies |𝜆𝜆𝑗𝑗𝑘𝑘| < 1. 

Therefore 𝜌𝜌(𝐴𝐴) < 1. 
 
Theorem 2: A necessary and sufficient condition for convergence of an 

iterative method of the form given in Equation 21 is that the eigenvalues of the 
iteration matrix satisfy|𝜆𝜆𝑗𝑗𝐴𝐴| < 1,𝑗𝑗 = 1,2, …𝑀𝑀𝑥𝑥. 

Proof: Prove of this theorem is given in JAIN et al. (1984). 
Therefore, by supporting these two theorems with the above theoretical and 

numerical error bound, the present method is convergent with third-order 
convergence. Hence to measure the accuracy of the proposed method, we use norms 
of average absolute error (AAE), root mean square (RMS) error (𝐿𝐿2) and maximum 
point-wise absolute error (𝐿𝐿∞). These norms are calculated as follows: 

 

      𝐿𝐿2 = � 1
𝑀𝑀𝑥𝑥

∑ �𝑈𝑈(𝑥𝑥𝑗𝑗 , 𝑡𝑡) − 𝑈𝑈𝑗𝑗 𝑁𝑁𝑡𝑡�
2𝑀𝑀𝑥𝑥

𝑗𝑗=1   , 𝐿𝐿∞ = max
1≤𝑗𝑗≤𝑀𝑀𝑥𝑥

�𝑈𝑈(𝑥𝑥𝑗𝑗 , 𝑡𝑡) − 𝑈𝑈𝑗𝑗  𝑁𝑁𝑡𝑡�, AAE = 1
𝑀𝑀𝑥𝑥

∑ �𝑈𝑈(𝑥𝑥𝑗𝑗 , 𝑡𝑡) − 𝑈𝑈𝑗𝑗 𝑁𝑁𝑥𝑥�𝑀𝑀𝑥𝑥
𝑗𝑗=1 ,  

 
Where  𝑈𝑈(𝑥𝑥, 𝑡𝑡) and 𝑈𝑈𝑗𝑗 𝑛𝑛 are the respectively exact and numerical solutions of 

the given model example. 
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4. RESULTS OF NUMERICAL EXPERIMENTS 
To demonstrate the applicability of the methods, three model examples have 

been considered and they are bellowed. 
 
Example 1. Consider the following nonlinear parabolic problem: 
                                                 Ut = αUxx − U + U2 + f(x, t); 0 < 𝑥𝑥 < 1 ,  0 < 𝑡𝑡 < 𝑇𝑇 
         Initial condition                             𝑈𝑈(𝑥𝑥, 0)   =  𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥)  , 
         Boundary condition                        𝑈𝑈(0, 𝑡𝑡) =  𝑈𝑈(1, 𝑡𝑡)  =  0          
         Exact Solution:                          𝑢𝑢(𝑥𝑥, 𝑡𝑡)  =  𝑒𝑒𝑥𝑥𝑝𝑝(−𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥).          
     Here source function:  𝑓𝑓(𝑥𝑥, 𝑡𝑡)  =  𝑒𝑒𝑥𝑥𝑝𝑝(−𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥)(𝜋𝜋^2 − 𝑒𝑒𝑥𝑥𝑝𝑝(−𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥)) 
  
Example 2. Consider the following nonlinear parabolic problem: 
                                                 Ut = Uxx − Η(U − γ) + f(x, t); 0 < 𝑥𝑥 < 1 ,  0 < 𝑡𝑡 < 𝑇𝑇 
           Initial condition                             𝑈𝑈(𝑥𝑥, 0)   =  𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥), 
          Dirichlet boundary condition                 𝑈𝑈𝑥𝑥(0, 𝑡𝑡)  =  𝑈𝑈𝑥𝑥(1, 𝑡𝑡)  =  0 
         Exact Solution:                          𝑢𝑢(𝑥𝑥, 𝑡𝑡)  =  𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥).          
        Here source function:  𝑓𝑓(𝑥𝑥, 𝑡𝑡)  =  𝜅𝜅(𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥) − γ )  
 
Example 3. Consider the following nonlinear parabolic problem: 
                                   Ut = Uxx − Η(U − γ) + |Ux|2 + f(x, t); 0 < 𝑥𝑥 < 1 ,  0 < 𝑡𝑡 < 𝑇𝑇 
           Initial condition                             𝑈𝑈(𝑥𝑥, 0)   =  𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥), 
           Robin boundary condition              𝑈𝑈𝑥𝑥(0, 𝑡𝑡)  =  𝑈𝑈𝑥𝑥(1, 𝑡𝑡)  =  𝜋𝜋𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡)                  
           Exact Solution:                          𝑢𝑢(𝑥𝑥, 𝑡𝑡)  =  𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥).          

                                                                             Here source function:  𝑓𝑓(𝑥𝑥, 𝑡𝑡) =  𝜅𝜅(𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡)𝑠𝑠𝑠𝑠𝑛𝑛(𝜋𝜋𝑥𝑥) − γ ) + |𝜋𝜋𝑒𝑒𝑥𝑥𝑝𝑝(−𝜋𝜋2𝑡𝑡) cos2(𝜋𝜋𝑥𝑥)|  
 

Table 1 Displaying the efficiency of the proposed scheme by listing Exact solution, 
Numerical solution, and point-wise absolute error, for problem give an example one for 
Mx=20 and at time t=1.154 when computations domain carried out until final time T=2 

Values of x Numerical and Exact solution Point-wise Absolute Error 
𝒙𝒙 𝑈𝑈𝑗𝑗   𝑈𝑈(𝑥𝑥𝑗𝑗 , 𝑡𝑡) 𝐿𝐿∞ 

𝟎𝟎.𝟎𝟎𝟎𝟎 1.5428𝐸𝐸 − 06 1.5226𝐸𝐸 − 06 2.0255𝐸𝐸 − 08 
𝟎𝟎.𝟐𝟐𝟎𝟎 6.9737𝐸𝐸 − 06 6.8822𝐸𝐸 − 06 9.1556𝐸𝐸 − 08 
𝟎𝟎.𝟎𝟎 9.8624𝐸𝐸 − 06 9.7329𝐸𝐸 − 06 1.2948𝐸𝐸 − 07 
𝟎𝟎.𝟖𝟖 5.7970𝐸𝐸 − 06 5.7208𝐸𝐸 − 06 7.6106𝐸𝐸 − 08 
𝟎𝟎.𝟗𝟗𝟎𝟎 1.5428𝐸𝐸 − 06 1.5226𝐸𝐸 − 06 2.0255𝐸𝐸 − 08 

 
Table 2 Displaying the efficiency of the proposed scheme by listing point average absolute 
error, Root Mean Square Error, and pointwise maximum absolute error for problem give an 
example one when computations domain carried out until final time T=1 for different mesh 
size h and time step ∆t 

Specified Mesh size Estimated errors at Specified Mesh size 
h ∆𝑡𝑡  𝐿𝐿∞  𝐿𝐿2 𝐴𝐴𝐴𝐴𝐸𝐸 

0.05  0.01 1.2948𝐸𝐸 − 07 2.8952𝐸𝐸 − 08 6.4739𝐸𝐸 − 09 
0.025 0.01 1.1151𝐸𝐸 − 07 1.7631𝐸𝐸 − 08 2.7877𝐸𝐸 − 09 

0.0125 0.008 1.0666𝐸𝐸 − 07 1.1925𝐸𝐸 − 08 1.3332𝐸𝐸 − 09 
0.01 0.008 1.0597𝐸𝐸 − 07 1.0597𝐸𝐸 − 08 1.0597𝐸𝐸 − 09 
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Figure 1 Solution profile for the solution of example one on the uniform mesh of maximum number 
grid point is  𝑴𝑴𝒙𝒙 =  𝟎𝟎𝟎𝟎  & time step is  ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

 

 
Figure 2 Graphical comparison of numerical versus exact solution of example one using a uniform 
mesh with maximum number grid point   𝑴𝑴𝒙𝒙 =  𝟎𝟎𝟎𝟎  & time step is  ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎 

 
Table 3 Comparison of maximum point-wise absolute error and Root Mean Square error for 
problem give an example two for computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with different mesh size h and time step ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎,𝜿𝜿 = 𝟎𝟎.𝟐𝟐𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟐𝟐𝟎𝟎 

Number of grid points Estimated norm of error with Specified Mesh size  
Result by R. Alharbi in Alharbi (2020) Result by Present Methods 

𝑴𝑴𝒙𝒙  𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 2.797𝐸𝐸 − 03 2.359𝐸𝐸 − 03 2.22E-06 3.92E-07 
64 1.735𝐸𝐸 − 03  5.897𝐸𝐸 − 04 2.22E-06 2.77E-07 

128 4.337𝐸𝐸 − 04  1.474𝐸𝐸 − 04 2.22E-06 1.96E-07 
256 1.084 𝐸𝐸 − 04  3.685𝐸𝐸 − 05 2.22E-06 1.39E-07 
512 2.710𝐸𝐸 − 05  9.213𝐸𝐸 − 06 2.22E-06 9.80E-08 

 
Table 4 Comparison of maximum point-wise absolute error and Root Mean Square error for 
problem give an example two for computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with different mesh size h and time step ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎, 𝜿𝜿 = 𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

Number of grid points Estimated norm of error with Specified Mesh size  
Result by R. Alharbi in Alharbi (2020) Result by Present Methods 

𝑴𝑴𝒙𝒙  𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 2.123𝐸𝐸 − 03 1.791𝐸𝐸 − 03 2.21E-05 3.91E-06 
64 5.310𝐸𝐸 − 04  4.479𝐸𝐸 − 04 2.21E-05 2.76E-06 
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128 1.327𝐸𝐸 − 04  1.119𝐸𝐸 − 04 2.21E-05 1.95E-06 
256 3.319𝐸𝐸 − 05  2.799𝐸𝐸 − 05 2.21E-05 1.38E-06 
512 8.298𝐸𝐸 − 06  6.999𝐸𝐸 − 06 2.21E-05 9.77E-07 

 
Table 5 Comparison of maximum point-wise absolute error and Root Mean Square error for 
problem give an example two in computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with different mesh size h and time step ∆𝒕𝒕 = 𝒉𝒉, 𝜿𝜿 = 𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

Number of grid 
points 

Estimated norm of error with Specified Mesh size 
 

Result by R. Alharbi in Alharbi 
(2020) 

Result by Present Methods 

𝑴𝑴𝒙𝒙  𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 2.123𝐸𝐸 − 03 1.791𝐸𝐸 − 03 6.71E-06 1.19E-06 
64 1.289𝐸𝐸 − 03 1.087𝐸𝐸 − 03 1.39E-05 1.7356eE-06 

128 7.015𝐸𝐸 − 04  5.917𝐸𝐸 − 04 2.86E-05 2.53E-06 
256 3.649𝐸𝐸 − 04  3.078𝐸𝐸 − 04 5.77E-05 3.60E-06 
512 1.860𝐸𝐸 − 04  1.569𝐸𝐸 − 04 1.16E-04 5.11E-06 

 

 
Figure 3 Graphical representation of numerical solution for example two using uniform mesh mesh-
size 𝒉𝒉 = 𝟎𝟎.𝟎𝟎𝟎𝟎 & time step and  ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎 and  𝜿𝜿 = 𝟎𝟎.𝟐𝟐𝟎𝟎  and  𝜸𝜸 = 𝟎𝟎.𝟐𝟐𝟎𝟎 

 
Table 6 Comparison of maximum point-wise absolute error and Root Mean Square error for 
problem give an example three in computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with different mesh size h, 𝜿𝜿 = 𝟎𝟎.𝟐𝟐𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

Number of grid 
points 

Estimated norm of error with Specified Mesh size 
 

Result by R. Alharbi in Alharbi (2020)    
time step∆𝑡𝑡 = ℎ2 

Result by Present Methods 
time step∆𝑡𝑡 = 0.0125 

𝑴𝑴𝒙𝒙  𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 1.613𝐸𝐸 − 02  1.358𝐸𝐸 − 02 1.76E-05 3.12E-06 
64 4.020𝐸𝐸 − 03  3.383𝐸𝐸 − 03 1.76E-05 2.20E-06 

128 1.00𝐸𝐸 − 03 8.451𝐸𝐸 − 04  1.76E-05 1.56E-06 
256 2.509𝐸𝐸 − 04  2.112𝐸𝐸 − 04 1.76E-05 1.10E-06 
512 6.274𝐸𝐸 − 05  5.280𝐸𝐸 − 05 1.76E-05 7.79E-07 
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Table 7 Comparison of maximum point-wise absolute error and root mean square error for 
problem give an example three in computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with different mesh size h, 𝜿𝜿 = 𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

Number of grid points Estimated norm of error with Specified Mesh size  
Result by R. Alharbi in Alharbi (2020) 

time step∆𝑡𝑡 = ℎ2 
Result by Present Methods 

time step∆𝑡𝑡 = 0.025 
𝑴𝑴𝒙𝒙  𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 5.491𝐸𝐸 − 03  4.622𝐸𝐸 − 03 7.18E-07 1.27E-07 
64 1.372𝐸𝐸 − 03  1.154𝐸𝐸 − 03 7.15E-07 8.94E-08 

128 3.429𝐸𝐸 − 04  2.886𝐸𝐸 − 04 7.15E-07 6.32E-08 
256 8.573𝐸𝐸 − 05  7.215𝐸𝐸 − 05 7.14E-07 4.47E-08 
512 2.143𝐸𝐸 − 05  1.803𝐸𝐸 − 05 7.14E-07 3.16E-08 

 
Table 8 Comparison of maximum point-wise absolute error and root mean square error for 
problem give an example three in computations domain carried out until final time 𝑻𝑻 = 𝟎𝟎.𝟎𝟎  
with the different mesh size of 𝒉𝒉 = 𝚫𝚫𝒕𝒕 , 𝜿𝜿 = 𝟎𝟎 and 𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

Number of grid points Estimated norm of error with Specified Mesh size  
Result by R. Alharbi in Alharbi (2020) Result by Present Methods 

𝑴𝑴𝒙𝒙 𝐿𝐿∞ 𝐿𝐿2 𝐿𝐿∞ 𝐿𝐿2 
32 4.622𝐸𝐸 − 03 5.491𝐸𝐸 − 03 5.76E-07 1.02E-07 
64 2.346𝐸𝐸 − 03  2.788𝐸𝐸 − 03 1.09E-06 1.36E-07 

128 1.181𝐸𝐸 − 03  1.404𝐸𝐸 − 03 2.13E-06 1.88E-07 
256 5.930𝐸𝐸 − 04  7.047𝐸𝐸 − 04 4.18E-06 2.61E-07 
512 2.970𝐸𝐸 − 04  3.529𝐸𝐸 − 04 8.27E-06 3.65E-07 

 

 
Figure 4 Graphical representation of the numerical solution of example three using a uniform mesh 
with different mesh-size & time step is ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎,  𝜿𝜿 = 𝟎𝟎 and  𝜸𝜸 = 𝟎𝟎.𝟎𝟎 
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Figure 5 Solution profile for the solution of example three on the uniform mesh of maximum 
number grid point is  𝑴𝑴𝒙𝒙 =  𝟎𝟎𝟎𝟎𝟎𝟎  , the time step is  ∆𝒕𝒕 = 𝟎𝟎.𝟎𝟎𝟎𝟎 𝜿𝜿 = 𝟎𝟎 and  𝜸𝜸 = 𝟎𝟎.𝟎𝟎 

 
5. DISCUSSION  
In this paper, the third-order iterative scheme is presented to solve a one-

dimensional non-linear parabolic partial differential equation. To demonstrate 
computation for the accuracy of percent of the method with the pre-existing method, 
three model examples are solved by taking different values for step size h, and time 
step k.  The computation of numerical results obtained by the present method has 
been presented in terms of average absolute error, root means square error and 
maximum point-wise absolute error. Results presented in Table 1 and Table 2 show 
that average absolute error (AAE), roots mean square error (𝐿𝐿2)  and point-wise 
maximum absolute error norm (𝐿𝐿∞) decreases as mesh-size ℎ and 𝑘𝑘 are decreases. 
Again, as we can see the comparison of the numerical and exact solution of the model 
problem given in example one summarized in Table 1 at selected grid points shows 
that the numerical solution is in good agreement with its exact solution. Also, the 
results of example two, given in Table 3 up to Table 5 show that, the accuracy of the 
present iterative method increases, and it's superior to the accuracy of the scheme 
in Alharbi (2020).  Figure 1,Figure 2, Figure 3,Figure 4, Figure 5 shows the physical 
background of the solution within the traditional form of future expected interest 
rates for each maturity. It means it shows that the forecasting rate of change of the 
total amount of interest rates is increasing to decreasing for each maturity of U in 
any sections of  0 <  𝑥𝑥 <  1  with a balance to the net inflow of interest across 0 to 
the 0.5-time interval. Also, in this case, the accuracy of the present method is rapidly 
increased and it’s superior to the accuracy of the scheme in Alharbi (2020). Further, 
as shown in Figure 3, the proposed method approximates the solution very well. The 
result presented in Table 6,Table 7,Table 8 also shows that; the root mean square 
error norm and maximum absolute error norm are decreased uniformly for solving 
example three with different values of step-length h, time-step  ∆𝑡𝑡, and constant f 
variation (𝐾𝐾, 𝛾𝛾). As we predict from this result, the accuracy of the present method 
is rapidly increased and it’s superior to the accuracy of the scheme in Alharbi (2020). 
Therefore, the accuracy of the present method confirmed the established numerical 
error bound. Hence in solving all applied three model examples, the results given in 
tables in terms of error norm and graphs of numerical versus exact solutions are 
further confirmed that the computational rate of convergence and theoretical 
estimates error bounds 

 
6. CONCLUSION  
A new approach, a third-order iterative scheme is used to solve nonlinear 

parabolic partial differential equations numerically and the result is presented in 
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table and graph. The comparison of the accuracy indicates that; the present method 
is the more convenient, reliable, and effective scheme. As it can be seen from the 
table and graphs, the present methods, improve the accuracy, by minimizing the 
number of grid points in a time interval and an equal number of grid points in the 
spatial interval with pre-existing methods. This shows that the present method 
avoids the cost of time-consuming and meshes generation. In a summary, the third 
iterative scheme is capable to solve nonlinear parabolic partial differential 
equations. Based on the findings, this method is well approximate and gives better 
accuracy for the numerical solution with a decreasing step size h, and fixed time step 
∆t. 
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NOMENCLATURE 

𝑳𝑳𝟐𝟐 

𝑳𝑳∞ 

𝑨𝑨𝑨𝑨𝑨𝑨 

 𝑵𝑵𝒕𝒕  
 

Root mean square error 
Maximum Pointwise error 
Average Absolute Error 
Maximum Number of the grid point in 
temporal direction 

𝒉𝒉 
∆𝒕𝒕 

𝑴𝑴𝒙𝒙,  

step length  
time step  
maximum number grid point in the 
spatial direction,  
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