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ABSTRACT 
The presence of holes, cracks or scratches in one or more object regions in a binary image 
usually results from quantizing or thresholding a gray scale image. However, for further 
processing or quantitative binary image analysis, those artifacts must be removed by 
filling the corresponding object regions. In this paper, a computational performance 
analysis is realized for the class of hole filling algorithms based on mathematical 
morphology. Two fundamental techniques, supervised and unsupervised, are described 
in detail based on marker images that may be composed of pixel subsets chosen within 
an object region artifact, formed by external near by points to object regions, or from 
selected background pixel subsets. A mathematical description spanning the different 
variants is given on how this kind of algorithms converge to the desired result. In 
addition, illustrative examples using representative binary images are provided to test 
and compare the computational performance in terms of the number of iterations 
corresponding to each morphological hole filling algorithm for binary images. 
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1. INTRODUCTION 
The subject of morphological binary image processing Serra (1986), Maragos 

(1987), Haralick et al. (1987), Dougherty (1992) is a branch of the more general 
subject of digital image processing and analysis. Binary image processing deals with 
black and white digital images whose values are coded with 0’s and 1’s, where the 
zero ‘0’ and one ‘1’ values are commonly interpreted, respectively, as background 
and foreground pixels. The foreground pixels may form one or more white shapes 
or regions in the image that usually correspond to objects of interest surrounded by 
a black background Pitas (2000), Gonzalez & Woods (2018). Since binary images are 
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a special case of gray scale images, it turns out that for “looking” or “displaying” a 
binary image coded with 0’s and 1’s, it is mapped to the gray scale dynamic range of 
non-negative integer values belonging to [0,255] assuming that the grayscale image 
is coded with 8 bits per pixel. Hence, for displaying purposes, the minimum value ‘0’ 
still represents black and the maximum value ‘255’ corresponds to white. Image 
processing tasks such as object segmentation and object recognition may produce a 
binary image that is obtained from thresholding or quantizing a grayscale image 
Pitas (2000), Najman & Talbot (2010), Gonzalez & Woods (2018), Gonzalez et al. 
(2020). The output binary image then requires some kind of post-processing to 
prepare it for further analysis. A typical situation is the presence of holes, cracks, or 
scratches in several regions of a binary image that need to be removed by filling 
them. For example, possible reasons for the presence of holes in a binary image is 
due to occluding objects, low reflectance subregions, or missing scanned portions 
ocurring in grayscale images. We remark that using the corresponding digital 
topology associated with an underlying digital grid such as the square grid, holes, 
cracks, and scratches can be considered as the same type of image artifact. 
Henceforth, we will use the word “hole” to represent any of the previously 
mentioned items. From a geometrical point of view, based on set theory, 
mathematical morphology has devised simple and effective hole filling algorithms 
to tackle the aforementioned problem as can be seen in Vincent (1992), Vincent 
(1993), Géraud et al. (2010) . In this research paper, we present a computational 
performance analysis of the fundamental region filling procedures based on 
mathematical set morphology.  

Recent contributions with respect to the basic hole filling morphological 
algorithms are described in Hasan & Mishra (2012), Valdiviezo et al. (2017). The 
work presented in Hasan & Mishra (2012) suggests the use of a different initial 
marker image for increasing the number of seed points used in the dilation 
operation as well as the dynamic use of two structuring elements, the “diamond” 
and “square” structuring elements of size 3 × 3, combined with thresholding for 
corrections of local 4-connectivity and 1-pixel-thin border object processing. On the 
other hand in Valdiviezo et al. (2017), a supervised hole filling algorithm based on 
morphological conditional dilation is based on chosing a single background pixel as 
the marker image and has the advantage of being very simple. However, this last 
scheme although interactive in nature, happens to be a particular case of the more 
general mechanism explained in Subsection 3.2 for the unsupervised algorithm. 
Also, alternative advances that realize improvements over the hole filling 
morphological algorithms are described in Fanfeng & Wei (2010), He et al. (2019). 
However, we do not delve into these last works since their computer 
implementation requires additional non-morphological techniques that would 
require other performance measures besides the number of iterations that we have 
selected for our computational tests.  

Our paper is organized as follows: in Section 2 we will give only the necessary 
mathematical morphology operations involved in hole filling algorithms. However, 
for the interested reader, in depth treatments of the basic morphological operations 
including additional ones derived using dilation and erosion, their algorithmic 
implementation as well as their applications to other tasks in digital image 
processing and analysis can be found in Rivest et al. (1993), Van Droogenbroeck 
(1994), Bloch et al. (2007), Beucher & Beucher (2012), Gonzalez & Woods (2018) 
and Gonzalez et al. (2020). Section 3 gives in detail the theoretical description of the 
fundamental mathematical morphology hole filling techniques emphasizing the 
central role of the marker image and henceforth, classifying the corresponding 
computational procedures as supervised or unsupervised. In Section 4, we present 
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our tests on various representative binary digital images using as a measure of 
computational performance, the number of iterations needed in each algorithm as 
applied to each binary image to produce the desired result. We end our paper with 
Section 5 to expose the conclusions of this research work as well as some pertinent 
comments on future developments. 

 
2. BACKGROUND ON MATHEMATICAL MORPHOLOGY  

Mathematical morphology as applied to digital image processing is a 
mathematical theory that is concerned with analysing and extracting form or shape 
information from objects contained in a given image. The basic scenario does occur 
in binary images where the notions of foreground objects and background are in 
general clearly distinguished in the context of specific real-world applications. Two 
encodings are possible in binary image processing, i. e., white foreground (WF) 
objects immersed in a black background (BB), denoted for short as WF-BB, or black 
foreground (BF) objects embedded in a white background (WB) abbreviated as BF-
WB. Algebraically speaking, both encodings, WF-BB and BF-WB, are dual to each 
other using binary complementation. Here we will use the first encoding. Note that 
the WF-BB coding is a particular case of grayscale 8-bit encoding whose dynamic 
range of 256 values is reduced from the non-negative integer interval, [0,255] ⊆ ℕ, 
to the two-value set {0,255}. On the other hand, the BF-WB encoding is generally 
employed in silhouette, artistic binary image processing or in theoretical 
descriptions based on graph theory. In this paper, only square images of size 𝑛𝑛 × 𝑛𝑛 
picture elements are used to simplify symbolic expressions in mathematical 
arguments and also since the extension to rectangular images is rather trivial. 

 
2.1. OPERATIONS ON SETS, DILATION AND EROSION 
We assume the reader is familiar with set relations such as inclusion and 

equality as well as the set operations of union, intersection, difference, and 
complementation. Some geometrical operations on sets follow. If 𝑆𝑆 = ℤ2, with origin 
𝑂𝑂 = (0,0), represents the two-dimensional digital space, let 𝐴𝐴 ⊆ 𝑆𝑆, then the 
complement A is defined as 𝐴𝐴𝑐𝑐 = {𝑥𝑥 ∈ 𝑆𝑆|𝑥𝑥 ∉ 𝐴𝐴}, and the symmetrical, origin reflected 
or transpose of A is considered to be the set �̌�𝐴 = {−𝑥𝑥 ∈ 𝑆𝑆|𝑥𝑥 ∈ 𝐴𝐴}. Also, if 𝑥𝑥 ∈ 𝑆𝑆, the 
translation of A by x, or translate 𝐴𝐴𝑥𝑥 is the subset of S specified by 𝐴𝐴𝑥𝑥 = {𝜉𝜉 + 𝑥𝑥|𝜉𝜉 ∈
𝐴𝐴}. In order to extract shape information from objects contained in a given image, 
the basic mechanism from the stand point of mathematical morphology, is to use a 
geometrically well-defined tiny shape as a probe that scans and interacts pixelwise 
with foreground objects and background. The elementary morphological 
operations, known as dilation and erosion, work with these tiny shapes formally 
called structuring elements, respectively to grow or shrink image objects. Thus, 
given a binary image A and a structuring element B, both considered as subsets of S, 
dilation and erosion of image set A by structuring element B are defined, 
respectively, by the left and right expressions in (1),  

 

                                                   𝐴𝐴⊕ 𝐵𝐵 = �𝑥𝑥 ∈ 𝑆𝑆�(𝐵𝐵�)𝑥𝑥 ∩ 𝐴𝐴 ≠ ∅� = �𝐴𝐴𝑏𝑏
𝑏𝑏∈𝐵𝐵

     ;     𝐴𝐴⊖ 𝐵𝐵 = {𝑥𝑥 ∈ 𝑆𝑆|𝐵𝐵𝑥𝑥 ⊆ 𝐴𝐴} = �𝐴𝐴−𝑏𝑏
𝑏𝑏∈𝐵𝐵

,          (1) 

 
where x denotes locations or points in digital space S and (𝐵𝐵�)𝑥𝑥 and 𝐵𝐵𝑥𝑥 denotes 

the translate of the symmetric structuring element, respectively, itself, to location 
𝑥𝑥 ∈ 𝑆𝑆. Note that dilation of A by B, denoted as 𝐴𝐴⊕ 𝐵𝐵, is a new set formed by all points 
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𝑥𝑥 ∈ 𝑆𝑆 such that 𝐵𝐵�  displaced at each x, overlaps or hits at least some portion of A. 
Analogously, erosion of A by B, in symbolic terms 𝐴𝐴⊖ 𝐵𝐵, refers to a new set 
consisting of all points 𝑥𝑥 ∈ 𝑆𝑆 such that B translated by x fits completely within A. The 
second equality shown in the left and right expressions in (1) are the equivalent set-
theoretical operations corresponding to Minkowski addition and Hadwiger 
substraction, which make clear, the upsizing or downsizing nature of A by B through 
a generalized union or intersection of translates. We point out that dilation and 
erosion are dual by complementation in the sense that dilating set A with structuring 
element B is equivalent to perform and erosion of its complement 𝐴𝐴𝑐𝑐with the 
symmetrical of 𝐵𝐵�  as established in (2), 

 
(𝐴𝐴⊕ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ⊝ 𝐵𝐵�      ;      (𝐴𝐴⊝ 𝐵𝐵)𝑐𝑐 = 𝐴𝐴𝑐𝑐 ⊕ 𝐵𝐵� .                                                              (2) 

 
Qualitatively, dilation enlarges an object, changes its convex corners, and 

reduces its surrounding background. Similarly, erosion reduces an object, changes 
its concave corners, and enlarges its neighbouring background. In relation to the 
morphological region filling algorithms exposed in Section 3, we will use only the 
dilation operation together with set complementation. Particularly, if B is a 
structuring element the repeated dilation of B with itself, i. e., 𝐵𝐵 ⊕ 𝐵𝐵 is written as 2B. 
In addition, if A is a single element set, i. e., 𝐴𝐴 = {𝑥𝑥}, then from (1) it follows readily 
that, 

 
{𝑥𝑥} ⊕𝐵𝐵 = 𝐵𝐵𝑥𝑥      ;      {𝑥𝑥} ⊖𝐵𝐵 = ∅,                                                                                 (3)       
 
meaning that dilation of a single (isolated) point x by B is equivalent to a 

geometrical translation of B to x which is coincident with B’s origin. Also, erosion of 
a single point x by B has the effect of removing the point since B displaced to x is not 
a subset of {x}.  A structuring element will be abbreviated as SE. More specifically, 
use is made of 3×3 SE’s having 4-connectivity (straight cross ‘+’ or diagonal cross ‘×’), 
and 8-connectivity (square block ‘■’).                                                                                                                  

 
2.2. IMAGE BORDER, HOLES AND LOCAL KNOWLEDGE 
For a binary image 𝐴𝐴 = (𝑎𝑎𝑖𝑖𝑖𝑖) of size 𝑛𝑛 × 𝑛𝑛 pixels, the border or frame of A, 

denoted by 𝜕𝜕𝐴𝐴, is defined by the set of pixels given by the union of the top (first) and 
bottom (last) rows of pixels together with the left (first) and right (last) columns of 
pixels. Thus, 𝜕𝜕𝐴𝐴 = 𝑅𝑅𝑡𝑡 ∪ 𝑅𝑅𝑏𝑏 ∪ 𝐶𝐶𝑙𝑙 ∪ 𝐶𝐶𝑟𝑟 , where 𝑅𝑅𝑡𝑡 = {𝑎𝑎0𝑖𝑖|𝑗𝑗 = 0,⋯ ,𝑛𝑛 − 1}, 𝑅𝑅𝑏𝑏 =
�𝑎𝑎𝑛𝑛−1𝑖𝑖�𝑗𝑗 = 0,⋯ ,𝑛𝑛 − 1�, 𝐶𝐶𝑙𝑙 = {𝑎𝑎𝑖𝑖0|𝑖𝑖 = 0,⋯ ,𝑛𝑛 − 1}, 𝐶𝐶𝑟𝑟 = {𝑎𝑎𝑖𝑖𝑛𝑛−1|𝑗𝑗 = 0,⋯ ,𝑛𝑛 − 1}, and 
𝑎𝑎𝑖𝑖𝑖𝑖 ∈ {0,255} for all i and j. A hole is defined as a background region in which any 
pixel is surrounded by a connected path of foreground pixels. An alternative 
definition of a hole is a background region that is bounded by a foreground object. 
Equivalently, no connected path of background pixels exists between any pixel in a 
hole and a background pixel of 𝜕𝜕𝐴𝐴. It should be clear that the border of an image not 
only delimits its size but also its contents. Hence, a physical sensor of finite 
dimensions that acquires or captures an image from a real scene will provide us with 
partial or local knowledge relative to objects or foreground regions contained in the 
original scene. In the case of objects with holes, 𝜕𝜕𝐴𝐴 may cut or truncate portions of 
their corresponding regions leaving them “unfinished” or “incomplete” beyond the 
image frame. Therefore, in a strict sense, truncated holes, cracks or scratches cannot 
be considered as such due to incomplete knowledge outside the image border. 
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However, the ocurrences just mentioned may be filled or not depending of 
contextual image content and its interpretation for further processing. 

 
3. MORPHOLOGICAL REGION FILLING ALGORITHMS  

The hole filling algorithms based on mathematical morphology can be 
categorized as supervised or unsupervised, and each one of them is founded on 
specific morphological set operations between the image itself and an auxiliary 
image known as the marker image, which in turn is derived from the given input 
image. The algorithms have been devised to be iterative in nature and therefore 
convergence to the desired result, i. e., the filled image is guaranteed to be obtained 
in a finite number of steps. 

 
3.1. SUPERVISED FILLING ALGORITHM 
A mathematical morphology hole filling algorithm is said to be supervised if the 

marker image is derived from the input image by selecting interactively an adequate 
subset of pixels. The chosen pixels may belong to image oject regions, to the image 
background or a mixture of both. Assuming that m holes 𝐻𝐻𝑖𝑖  for 𝑖𝑖 = 1,⋯ ,𝑚𝑚 exist in 
one or more objects as foreground regions in a given binary image A of size 𝑛𝑛 × 𝑛𝑛, 
the common choice, as exposed in preliminary treatments on mathematical 
morphology of sets and its applications to binary images Gonzalez & Woods (2018), 
Gonzalez et al. (2020) consists in taking a single point or pixel 𝑝𝑝𝑖𝑖𝛼𝛼  belonging to each 
hole 𝐻𝐻𝑖𝑖 . Thus, the marker image M or set of markers is defined as the set 𝑀𝑀 =
{𝑝𝑝𝑖𝑖𝛼𝛼 ∈ 𝐻𝐻𝑖𝑖|𝑖𝑖 = 1,⋯ ,𝑚𝑚}, where 𝑀𝑀 = 𝑀𝑀0 is not a proper subset of A and 𝑚𝑚 ≪ 𝑛𝑛2. The 
basic morphological hole filling algorithm consists of an iterative scheme based on 
conditional dilation as specified in the following equation: 

 
𝑀𝑀𝑙𝑙 = (𝑀𝑀𝑙𝑙−1 ⊕ 𝐵𝐵) ∩ 𝐴𝐴𝑐𝑐 ;   𝑙𝑙 = 1,⋯ , 𝑘𝑘                                                                                  (4) 

 
where, 𝐵𝐵 = 𝐵𝐵�  is a symmetric structuring element corresponding to 3 × 3 

elementary neighborhood with 4 (straight or diagonal cross), 6 (hexagon) or 8 
(square) connectivity, and 𝐴𝐴𝑐𝑐 is the complement of A. Computation of 𝑀𝑀𝑙𝑙 is repeated 
until 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘  and the final iteration stops at 𝑙𝑙 = 𝑘𝑘 . In the last step, the union set 
𝑀𝑀𝑘𝑘 ∪ 𝐴𝐴 contains the original object regions with their holes, cracks, or scratches 
filled. Note that, in (4), the intersection of 𝑀𝑀𝑙𝑙−1 ⊕ 𝐵𝐵 at each iteration with 𝐴𝐴𝑐𝑐 limits 
the expanding effect of performing successive dilations. To cover every aspect, we 
explain in more detail how the basic algorithm works. Specifically, we can write the 
marker set as 𝑀𝑀0 = ⋃ {𝑝𝑝𝑖𝑖𝛼𝛼}𝑚𝑚

𝑖𝑖=1 , where each point 𝑝𝑝𝑖𝑖𝛼𝛼 ∈ 𝐻𝐻𝑖𝑖  and 𝐻𝐻𝑖𝑖  is a subset 
corresponding to a hole within an object region that properly may have more than 
one hole and which we write as ℛ𝐻𝐻. We also assume that the structuring element 
contains the origin, thus 0 ∈ 𝐵𝐵. Unfolding the iterative conditional dilation for 𝑙𝑙 = 1 
we have that 

 

𝑀𝑀1 = (𝑀𝑀0 ⊕ 𝐵𝐵) ∩ 𝐴𝐴𝑐𝑐 = ���{𝑝𝑝𝑖𝑖𝛼𝛼}
𝑚𝑚

𝑖𝑖=1

� ⊕ 𝐵𝐵� ∩ 𝐴𝐴𝑐𝑐 = ��[{𝑝𝑝𝑖𝑖𝛼𝛼} ⊕𝐵𝐵]
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐴𝐴𝑐𝑐  

= ��𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐴𝐴𝑐𝑐 = �𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼
𝑚𝑚

𝑖𝑖=1
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where 𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 is the structuring element translated to point 𝑝𝑝𝑖𝑖𝛼𝛼  after applying the 
first expression in (3), and 𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼  ⊂ 𝐴𝐴c for any i. Similarly, for 𝑙𝑙 = 2, we obtain, 

 

𝑀𝑀2 = (𝑀𝑀1 ⊕ 𝐵𝐵) ∩ 𝐴𝐴𝑐𝑐 = ���𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼
𝑚𝑚

𝑖𝑖=1

� ⊕ 𝐵𝐵� ∩ 𝐴𝐴𝑐𝑐 = ���𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 ⊕ 𝐵𝐵�
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐴𝐴𝑐𝑐  

= ��2𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐴𝐴𝑐𝑐 = � 2𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 

𝑚𝑚

𝑖𝑖=1

. 

 
Note that, 𝐵𝐵𝑝𝑝𝑖𝑖 ⊕ 𝐵𝐵 can be written as 2𝐵𝐵𝑝𝑝𝑖𝑖  since dilation at each iteration is 

performed on the previously grown set 𝐵𝐵𝑝𝑝𝑖𝑖  . Thus, the result of the l-th iteration is 
given by 𝑀𝑀𝑙𝑙 = ⋃ 𝑙𝑙𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼

𝑚𝑚
𝑖𝑖=1  , where 𝑙𝑙𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 = (𝑙𝑙 − 1)𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 ⊕ 𝐵𝐵. At this stage, several points 

in 𝑀𝑀0 have been expanded to their corresponding hole sizes and the remaining 
unfilled holes still require further iterations until the growing scheme stops after 
masking once more with 𝐴𝐴𝑐𝑐 . Therefore, for 𝑘𝑘 > 𝑙𝑙, it happens that (𝑘𝑘 + 1)𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼 = 𝑘𝑘𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼  
which in turn implies that 𝑀𝑀𝑘𝑘+1 = 𝑀𝑀𝑘𝑘 , and the resulting set, 𝑀𝑀𝑘𝑘 = ⋃ 𝑘𝑘𝐵𝐵𝑝𝑝𝑖𝑖𝛼𝛼

𝑚𝑚
𝑖𝑖=1  

contains the required flooded holes. Finally, set 𝐴𝐴𝑓𝑓 = 𝐴𝐴 ∪𝑀𝑀𝑘𝑘  gives the desired result 
by gluing all the filled holes with the original image. Consequently, all 
multiconnected foreground regions or equivalently objects with one or more holes 
are changed to simple connected regions, i. e., objects without holes, cracks or 
scratches. The supervised morphological filling algorithm will be abbreviated as 
SMFA. 

 
3.2. UNSUPERVISED FILLING ALGORITHM 
A mathematical morphology hole filling algorithm is said to be unsupervised if 

the marker image is derived from the input image by means of a mathematical 
function or by an automatic procedure that defines an adequate proper subset of 
pixels (cf., e.g., Hasan & Mishra (2012) and Gonzalez & Woods (2018)). Again, 
selected image points may be background, foreground or a combination of both 
types of pixels. In the present context used is made of what is known as 
morphological reconstruction and the terminology is changed to convey its 
generality upon application of more advanced morphological mathematical 
operations such as opening or closing which fall outside the scope of this work. 
Specifically, morphological conditional dilation turns to be morphological geodesical 
dilation, the input or source image is consider as a mask to control geodesical 
dilation growth or reconstruction, and the role of the marker image is the same as 
previously explained, except that it is defined by a mathematical function as already 
mentioned above. For the case at hand, the marker image M corresponding to the 
mask image usually denoted by G is given by, 

 
𝑀𝑀 = (𝐺𝐺 − 𝐺𝐺) ∪ (255 − 𝜕𝜕𝐺𝐺).                                                                                                (5) 

 
Interpretation of (5) in terms of image content is that, 𝐺𝐺 − 𝐺𝐺 = ∅, a set 

difference equal to the void set gives us a full black background image of which we 
change the image border, i.e., 255 − 𝜕𝜕𝐺𝐺 with white pixels all around except where 
foreground objects touch it and become black pixels. If (𝑖𝑖, 𝑗𝑗) denote the integer 

https://www.granthaalayahpublication.org/ojs-sys/index.php/ijoest/


Gonzalo Urcid, José-Angel Nieves-Vázquez, and Rocío Morales-Salgado 
 

International Journal of Engineering Science Technologies 7 
 

spatial coordinates of image G (the mask or input image), where 𝑖𝑖, 𝑗𝑗 = 0,⋯ ,𝑛𝑛 − 1, 
then the matrix expression associated with (5) is the following: 

 

𝑀𝑀𝑖𝑖𝑖𝑖 = �
255 − 𝐺𝐺𝑖𝑖𝑖𝑖 , 𝐺𝐺𝑖𝑖𝑖𝑖 ∈ 𝜕𝜕𝐺𝐺,

0, 𝐺𝐺𝑖𝑖𝑖𝑖 ∉ 𝜕𝜕𝐺𝐺.                                                                                            (6) 

 
Worth to remark is the fact that the marker image M as established in (6) is a 

set of pixels with a special structure that is not a subset of G. In particular, if 𝐺𝐺𝑖𝑖𝑖𝑖  is a 
background pixel then 𝑀𝑀𝑖𝑖𝑖𝑖 = 255, meaning that the selected image border pixel is 
turned “on”, i. e., becomes a marker. In case 𝐺𝐺𝑖𝑖𝑖𝑖  is a foreground pixel then 𝑀𝑀𝑖𝑖𝑖𝑖 = 0, 
hence the corresponding image border pixel is turned “off” or equivalently is not 
consider a marker point. Thus, M contains only background pixels as marker points. 
As mentioned earlier, in morphological processing several image manipulations are 
derived from a parametric operation known as morphological recontruction that 
considers two images, the marker image M and the mask image G together with a 
symmetric structuring element B which is a 3 × 3 elementary neighborhood with 4, 
6 or 8 connectivity. Notice that in general G is not necessarily equal to a given input 
image A. Furthermore, in the case of filling one or more holes using (6) it turns out 
that 𝐺𝐺 = 𝐴𝐴𝑐𝑐 . Particularly, the morphological geodesic dilation of size n is defined 
recursively as, 

 
𝛿𝛿𝐺𝐺𝑛𝑛(𝑀𝑀) = 𝛿𝛿𝐺𝐺1[𝛿𝛿𝐺𝐺𝑛𝑛−1(𝑀𝑀)]  where   𝛿𝛿𝐺𝐺1(𝑀𝑀) = (𝑀𝑀⊕𝐵𝐵) ∩ 𝐺𝐺,                                       (7)                                                                                  
 
expression interpreted as the morphological geodesic dilation of size 1. 

Recalling the way M is defined, the unsupervised hole filling algorithm using 
morphological geodesic dilation is based on the following iterative procedure, 

 
𝛿𝛿𝐺𝐺𝑙𝑙 (𝑀𝑀) = 𝛿𝛿𝐺𝐺1�𝛿𝛿𝐺𝐺𝑙𝑙−1(𝑀𝑀)�  for   𝑙𝑙 = 1,⋯𝑘𝑘,                                                                                (8) 

 
until stability is accomplished, i. e., when 𝛿𝛿𝐺𝐺𝑘𝑘+1(𝑀𝑀) = 𝛿𝛿𝐺𝐺𝑘𝑘(𝑀𝑀) and 𝑙𝑙 = 𝑘𝑘 is the last 

iteration. In the final step, the output or final image 𝐴𝐴𝑓𝑓 with all holes filled is 
determined by computing, 

 

𝐴𝐴𝑓𝑓 = �𝛿𝛿𝐺𝐺𝑘𝑘(𝑀𝑀)�𝑐𝑐 .                                                                                                                    (9)               
 
Again, for the sake of completeness, we present how the algorithm given by (8) 

and (9) works. As before, we can write the marker set as 𝑀𝑀 = ⋃ {𝑝𝑝𝑖𝑖
𝛽𝛽}𝑚𝑚

𝑖𝑖=1 , where each 
point 𝑝𝑝𝑖𝑖

𝛽𝛽 ∈ 𝜕𝜕𝐴𝐴, 𝑚𝑚 ≤ 4𝑛𝑛, and 𝜕𝜕𝐴𝐴 is the subset corresponding to the image border. 
Note that M does not contain any point marking a hole within an object region. 
Recalling that the structuring element contains the origin, i. e., 0 ∈ 𝐵𝐵 and that the 
mask 𝐺𝐺 = 𝐴𝐴𝑐𝑐 , the morphological geodesic dilation for 𝑙𝑙 = 1 is given by 

 

𝛿𝛿𝐺𝐺1(𝑀𝑀) = (𝑀𝑀⊕𝐵𝐵) ∩ 𝐺𝐺 = ����𝑝𝑝𝑖𝑖
𝛽𝛽�

𝑚𝑚

𝑖𝑖=1

� ⊕ 𝐵𝐵� ∩ 𝐺𝐺 = ����𝑝𝑝𝑖𝑖
𝛽𝛽� ⊕ 𝐵𝐵�

𝑚𝑚

𝑖𝑖=1

� ∩ 𝐺𝐺 
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= ��𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐺𝐺 = �𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
𝑚𝑚

𝑖𝑖=1

 

where 𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
 is the structuring element translated to point 𝑝𝑝𝑖𝑖

𝛽𝛽 after applying the 

first expression in (3), and 𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
 ⊂ 𝐺𝐺 for any i. Similarly, the morphological geodesic 

dilation for 𝑙𝑙 = 2, results in, 
 

𝛿𝛿𝐺𝐺2(𝑀𝑀) = 𝛿𝛿𝐺𝐺1[𝛿𝛿𝐺𝐺1(𝑀𝑀)] = (𝛿𝛿𝐺𝐺1(𝑀𝑀) ⊕𝐵𝐵) ∩ 𝐺𝐺 = ���𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
𝑚𝑚

𝑖𝑖=1

� ⊕ 𝐵𝐵� ∩ 𝐺𝐺

= ���𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
⊕ 𝐵𝐵�

𝑚𝑚

𝑖𝑖=1

� ∩ 𝐺𝐺 

= ��2𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
𝑚𝑚

𝑖𝑖=1

� ∩ 𝐺𝐺 = � 2𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽 

𝑚𝑚

𝑖𝑖=1

 

 
In similar fashion, the result of the l-th iteration is given by 𝛿𝛿𝐺𝐺𝑙𝑙 (𝑀𝑀) = ⋃ 𝑙𝑙𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽

𝑚𝑚
𝑖𝑖=1  

, where 𝑙𝑙𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
= (𝑙𝑙 − 1)𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽

⊕ 𝐵𝐵. At this stage, all points in M have been expanded 

within the mask G covering almost all space outside the exterior edges of object 
regions with or without holes, no matter their number or size. Further iterations fills 
up the remaining external space and dilation stops after masking once more with G 
and obtaining a result equal to the previous one. Therefore, for 𝑘𝑘 > 𝑙𝑙, it happens that 
(𝑘𝑘 + 1)𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽

= 𝑘𝑘𝐵𝐵𝑝𝑝𝑖𝑖𝛽𝛽
 which in turn implies that 𝛿𝛿𝐺𝐺𝑘𝑘+1(𝑀𝑀) = 𝛿𝛿𝐺𝐺𝑘𝑘(𝑀𝑀), and the resulting 

set, 𝛿𝛿𝐺𝐺𝑘𝑘(𝑀𝑀) = ⋃ 𝑘𝑘𝐵𝐵𝑝𝑝𝑖𝑖𝑘𝑘
𝑚𝑚
𝑖𝑖=1  contains the flooded space that surrounds the exterior 

edges of all object regions. Finally, set 𝐴𝐴𝑓𝑓 = �𝛿𝛿𝐺𝐺𝑘𝑘(𝑀𝑀)�𝑐𝑐 gives the desired result since 
the complement of the external space between all object regions contains all original 
foreground regions including those with filled holes. In this case, the set difference, 
𝐴𝐴𝑓𝑓 − 𝐴𝐴 gives an image with all filled holes, cracks, or scratches. The unsupervised 
morphological filling algorithm will be abbreviated as UMFA. 

  
3.3. ALGORITHM COMPARISON 
From the discussion presented in Subsections 3.1 and 3.2, it can be seen that 

the supervised and unsupervised versions of the morphological hole filling 
algorithm share the same structural iterative procedure to attain their goal. 
However, as has been explained in detail, their main difference resides in the way 
the marker image is established, which in turn distinguishes their mode of 
operation, that is, interactive versus automatic, hence the use of a superscript for 
marker points within holes versus the use of the β superscript for marker points 
belonging to the image border. 

In supervised mode we made the assumption that the number of holes is much 
less than the number of pixels in a given square image, i. e. 𝑚𝑚 ≪ 𝑛𝑛2, which in turn is 
related to the number of connected or multiconnected object regions. In 
unsupervised mode, the number of seed points or initial markers is bounded by the 
number of pixels on the image border, i. e. 𝑚𝑚 ≤ 4𝑛𝑛, and is derived from the manner 
in which the marker image is defined by means of a mathematical function. It is not 
difficult to see that the variables n and m are essential to determine the 
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computational complexity of each algorithm. However, to date there is no explicit 
functional expression for the corresponding computational complexity for parallel 
and sequential implementations of both algorithms (cf. Sec. IV in Vincent (1993) ). 
Nonetheless, computational tests can be based on measuring execution time or 
counting the number of iterations to achieve the desired result. Execution time is 
dependent on computing machinery characteristics and iteration count depends on 
programming implementation either parallel or sequential. Specifically, we will use 
the iteration count criterion to compare our implementation of the morphological 
filling algorithms previously described. 

 
4. COMPUTATIONAL TESTS ON BINARY IMAGES  

The results obtained with a computer implementation of the supervised and 
unsupervised morphological hole filling algorithms using the Mathcad high level 
programming language are presented in detail. In comparing both techniques, 15 
binary images of size 256×256 pixels with WF-BB encoding were used. However, to 
ilustrate visually the results obtained, 8 digital binary images were selected as 
displayed in Figure 1. A description of all test images is listed in Table 1 where 
selected images for display are marked on the right with an asterisk (*).  
Table 1 

Table 1 Set of 16 Test Binary Images used for Morphological Hole Filling 

Test Image Holes Description 
‘00’ 2 two-hole small image 32×32 px (initial testing) 
‘01’ 1 single hole within a disk 
‘02’ 14 multiple round holes 
‘03’ 15 multiple irregular holes 
‘04’ 6 multiple holes of different shapes * 
‘05’ 3 holes and scracthes * 
‘06’ 10 set of simple tools, several shapes * 
‘07’ 34 several simple object silhouettes * 
‘08’ 13 multiple holes within particles 
‘09’ 23 multiple holes within irregular particles * 
‘10’ 43 multiple small holes within cells 
‘11’ 29 multiple sector holes in a circular pattern * 
‘12’ 30 holes in letters of a sample text 
‘13’ 20 holes in letters of unequal size & orientation * 
‘14’ 57 multiple sized holes within a natural scene * 
‘15’ 6 holes within an artificial object composition 

 
In the following pages, the results obtained with the supervised morphological 

filling algorithm (SMFA) are shown in Figure 2, Figure 3, Figure 4, Figure 5. Next, the 
results obtained with the unsupervised morphological filling algorithm (UMFA) are 
given in Figure 6, Figure 7, Figure 8, Figure 9. In both groups of results the 
structuring element used was the straight cross ‘+’ of size 3×3 pixels whose corners 
are turned ‘off’ (0) and any other pixel is ‘on’ (255). For visualization purposes 
points within holes, serving as markers, are displayed as white boxes of size 3×3 pxs 
and clearly, only the center point is employed for operating with the SMFA. 
Similarly, background points on the image border 𝜕𝜕𝐴𝐴 used as markers have been 
dilated to a 3×3 pixel size and shown in red color to emphasize their nature. Again, 
only single pixels belonging to the image border are used to operate the UMFA. The 
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numerical values of the iteration count for each test binary image using both 
algorithms with SE’s, ‘+’ (4-connectivity) and ‘■’ (8-connectivity) are listed in Table 
2 that appears after Figure 9.  
 Figure 1 

 
Figure 1 1st Group of 8 Sample Binary Images Selected from a set of 15 Test Images. Label Numbers 
from Left to Right, Top to Bottom is ‘04’, ‘05’, ‘06’, ‘07’, ‘09’, ‘11’, ‘13’, ‘14’ and Separation Between 
Images is Shown in Gray. 
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Figure 2 

 
Figure 2 Results for Binary Images ‘04’ and ‘05’ using SMFA and SE=‘+’. For Image ‘04’, 1st Row: 
Left, Source Image; Right, Marker Image with 6 Points (Holes). 2nd Row: Left, Filled Holes; Right, 
Source Image with Holes Filled. For Image ‘05’, 3rd and 4th Rows: Same Clockwise Sequence as in 
Previous Binary Image. Marker Image has 3 Points (Holes). 
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Figure 3 

 
Figure 3 Results for Binary Images ‘06’ and ‘07’ using SMFA and SE=‘+’. For Image ‘06’, 1st Row: 
Left, Source Image; Right, Marker Image with 10 Points (Holes). 2nd Row: Left, Filled Holes; Right, 
Source Image with Holes Filled. For Image ‘07’, 3rd and 4th Rows: Same Clockwise Sequence as in 
Previous Binary Image. Marker Image has 34 Points (Holes). 
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Figure 4 

 
Figure 4 Results for Binary Images ‘09’ and ‘11’ Using SMFA and SE=‘+’. For Image ‘09’, 1st Row: 
Left, Source Image; Right, Marker Image with 23 Points (Holes). 2nd Row: Left, Filled Holes; Right, 
Source Image with Holes Filled. For Image ‘11’, 3rd and 4th Rows: Same Clockwise Sequence as in 
Previous Binary Image. Marker Image has 29 Points (Holes). 
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Figure 5 

 
Figure 5 Results for Binary Images ‘13’ and ‘14’ Using SMFA and SE=‘+’. For Image ‘13’, 1st Row: 
Left, Source Image; Right, Marker Image with 20 Points (Holes). 2nd Row: Left, Filled Holes; Right, 
Source Image with Holes Filled. For Image ‘14’, 3rd and 4th Rows: Same Clockwise Sequence as in 
Previous Binary Image. Marker Image has 57 Points (Holes). 
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Figure 6 

 
Figure 6 Results for Binary Images ‘04’ and ‘05’ Using UMFA and SE=‘+’. For Image ‘04’, 1st Row: 
Left, Source Image; Right, Marker Image with Border Points (Red Color). 2nd Row: Left, Source 
Image with Holes Filled; Right, Filled Holes. For Image ‘05’, 3rd and 4th Rows: Same Clockwise 
Sequence as in Previous Binary Image. Marker Image Shows Border Points in Red. 
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Figure 7 

 
Figure 7 Results for Binary Images ‘06’ and ‘07’ Using UMFA and SE=‘+’. For Image ‘06’, 1st Row: 
Left, Source Image; Right, Marker Image with Border Points (Red Color). 2nd Row: Left, Source 
Image with Holes Filled; Right, Filled Holes. For Image ‘07’, 3rd and 4th Rows: Same Clockwise 
Sequence as in Previous Binary Image. Marker Image Shows Border Points in Red. 
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Figure 8 

 
Figure 8 Results for Binary Images ‘09’ and ‘11’ Using UMFA and SE=‘+’. For Image ‘09’, 1st Row: 
Left, Source Image; Right, Marker Image with Border Points (Red Color). 2nd Row: Left, Source 
Image with Holes Filled; Right, Filled Holes. For Image ‘11’, 3rd and 4th Rows: Same Clockwise 
Sequence as in Previous Binary Image. Marker Image Shows Border Points in Red. 

https://www.granthaalayahpublication.org/ojs-sys/index.php/ijoest/


Computational Performance of Hole Filling Morphological Algorithms for Binary Images 
 

International Journal of Engineering Science Technologies 18 
 

Figure 9 

 
Figure 9 Results for Binary Images ‘13’ and ‘14’ using UMFA and SE=‘+’. For Image ‘13’, 1st Row: 
Left, Source Image; Right, Marker Image with Border Points (Red Color). 2nd Row: Left, Source 
Image with Holes Filled; Right, Filled Holes. For Image ‘14’, 3rd and 4th Rows: Same Clockwise 
Sequence as in Previous Binary Image. Marker Image Shows Border Points in Red. 
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Table 2 
Table 2 Count Iteration k for Each Test Binary Image Using Morphological Hole Filling 

Test Image Holes SMFA ‘+’ SMFA ‘■’ UMFA ‘+’ UMFA ‘■’ 
‘00’ 2 9 7 13 13 
‘01’ 1 50 34 103 103 
‘02’ 14 12 9 287 255 
‘03’ 15 20 16 303 245 
‘04’ 6 49 33 261 255 
‘05’ 3 41 34 249 249 
‘06’ 10 43 32 315 255 
‘07’ 34 35 202 § 273 255 
‘08’ 13 23 17 331 233 
‘09’ 23 36 340 § 461 329 
‘10’ 43 10 138 § 285 255 
‘11’ 29 111 75 91 91 
‘12’ 30 5 4 263 255 
‘13’ 20 19 13 301 257 
‘14’ 57 59 133 757 291 
‘15’ 6 330 305 255 243 

 
Comparing the iteration count in Table 2 between the 3rd and 5th columns one 

can see that the k values obtained with the SMFA ‘+’ are less than those obtained by 
applying the UMFA ‘+’, except for test images ‘11’ and ‘15’. A similar comparison 
occurs between the 4th and 6th columns, where k values are greater for the UFMA ‘■’ 
than for the SFMA ‘■’, except for test images ‘09’ and ‘15’. In general, the number of 
iterations required by the SFMA is much less than the number needed by the UFMA. 
The difference, as explained earlier, lies in the manner the marker images are built, 
i. e., interactively versus autonomously. However, the greater advantage of 
morphological recontruction from border points against conditional dilation based 
on seed points within holes is that, the first one as an automatic procedure does not 
require user intervention. Standard actual computer equipment spends milliseconds 
even for greater values of k such as those obtained with the UFMA and is 
independent of the number of holes. In disadvantage, minutes are consumed, before 
applying the SFMA, in preparing a marker image that depends on the number of 
holes and their spatial location. 

An important remark is in order. In column 4, the k value for test images ‘07’,’09’ 
and ‘10’ has the symbol ‘§’ meaning that “locally” there are pixels which are 8-connected 
to the background and therefore the use of the box ‘■’ as SE, does not work correctly in 
treating single pixels as part of a hole. Hence, although convergence is reached, the image 
results fail to be useful. Finally, as a rule of thumb, both SFMA ‘+’ and UFMA ‘+’ can 
be used securely in practical applications, the second being the best due to its conceptual 
characteristics. 

 
5. CONCLUSIONS  

In this paper, the computational performance between supervised and 
unsupervised morphological hole filling algorithms has been analysed 
mathematically using explicit and detailed arguments based on set mathematical 
morphology. In addition, a representative collection of binary test images were used 
for showing qualitatively image results obtained by running both type of algorithms 
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as well as quantitative numerical results obtained by keeping track of the total 
number of iterations required for convergence. Future work contemplates, for 
example, the study of possible correlations between the number of holes and the 
number of iterations needed.  
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