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ABSTRACT 
In order to model default risk, this article examines the impact of debt maturity time, 
volatility, and expected asset return on probability of default (PD). The study compares 
the probability of default produced by the Merton and Moody's KMV (MKMV) 
methodologies and add modifying time, volatility, and expected return on assets to see 
how they affect the probabilities of default produced. It utilizes the balance sheet from 
Apple Inc. (AAPL) recorded from 2019 September 29 to 2022 September 29 for the 
current and total liabilities and asset values in order to calculate the Probability of 
Default. The process begins by determining the distances to default (DD) for Merton and 
MKMV using the balance sheet, and then use the DDs to determine the likelihood of 
default (PD). Results indicates that, the MKMV approach compares favorably to the 
Merton approach. 
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1. INTRODUCTION 
Default risk, also known as default probability, is the likelihood that a borrower 

won't pay back the principal and interest owed on a debt security in whole and on 
time. One of the two elements of credit risk is default risk, along with loss severity. 
The chance of a default over a specific time horizon is described by the financial risk 
management term probability of default (PD). It offers a prediction of the 
probability that a borrower won't be able to pay back its debt. The PD is normally 
determined by performing a migration study of loans with similar ratings over a 
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certain time period and calculating the proportion of defaulted loans. The PD is then 
assigned to the risk level and each risk level will only have one PD percentage Joseph 
(2021). 

The PD can be used in a wide range of different credit analysis or risk 
management scenarios. It is influenced by the borrower's qualities as well as the 
overall state of the economy. In order to make up for the increased default risk, 
creditors (lenders) often demand a higher interest rate. Various credit evaluations 
and risk management frameworks make use of the PD especially in the 
determination of the economic or regulatory capital for a banking organization. 

The PD is closely related to the expected loss, which is calculated as the sum of 
the Product Derivative (PD), Loss Given Default (LGD), and Exposure at Default 
(EAD). This study explore the effects of volatility, expected return, and debt maturity 
time on probability of default in credit risk using Merton and Moody's KMV model. 

 
2. LITERATURE 

Peresetsky et al. (2011) conducted an econometric analysis of Russian bank 
failures from 1997 to 2003, concentrating on the degree to which information from 
quarterly bank balance sheets that is made publicly available can be used to 
anticipate defaults in the future. Their probability of default model was built using 
binary choice models. The model produced a fair predictive power on calculating 
the chance of default that Russian banks can utilize, despite the low quality of the 
balance sheet data from Russia. 

To calculate the implied likelihood of default from stock and option market 
prices, Câmara et al. (2012) modified Merton (1976) ruin option pricing model. By 
examining all international financial institutions having traded options in the US and 
concentrating on the subprime mortgage crisis era, they tested their model. The 
performance of the implied default probability produced by their methodology was 
compared to the anticipated default frequencies based on the Moody's KMV model. 
Their model's outcomes surpassed credit scores and agreed with those of the KMV 
model. 

A method for expressing credit risk was created by Valášková and Klieštik 
(2014) and uses either the probability of debtor default (businesses) or the 
difference between the asset value of the company and the default barrier expressed 
as a number of standard deviations. They demonstrate that the bond maturity is the 
key point in the Merton model and that defaults at this time occur when the market 
value of the asset is less than the bond's nominal value. In this situation, the 
company's financial resources won't be sufficient to pay off all of its debtors. 

Based on Moody's KMV model, Voloshyn (2015) created a straightforward 
method for explicitly predicting a credit limit for a company. Their method allowed 
for the consideration of loan term to maturity, asset quality, balance sheet structure, 
and required degree of default probability. The proposed technique explained well-
known intuitive phenomena like the lower the credit limit, the higher the level of 
confidence, and the lower the credit limit, as well as the lower the credit limit, the 
higher the volatility of return on assets. Their method allowed for the consideration 
of the possibility that a company might invest fresh debt in assets with a different 
quality than existing assets. 

Sariev and Germano (2020) developed an enhanced Bayesian regularization 
method to train artificial neutral networks (ANNs) and contrasted it to the 
traditional regularizations method used to train feedforward networks, which uses 
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the back-propagation technique. On three separate data sets, they examined the 
categorization accuracy of various network designs. Profitability, leverage, and 
liquidity were discovered to be significant financial default driver groups. 

Joseph (2021) calculated and calibrated the credit rating default probability 
using Bayesian statistics and Monte-Carlo simulations. They used their approach on 
banks and other financial institutions to address the problem of non-monotonicity 
that arises when default rates are calculated empirically. By assuming that the 
default rate parameter is a non-random variable that follows the Beta distribution, 
they were able to implement their strategy. They first calculated a posterior density 
of the default rate parameter using historical data, and then they used simulations 
to calculate an estimate of the actual default rate parameter. Their outcomes were 
found to be equivalent to those of other well-liked calibration techniques frequently 
employed in the literature. They take a long time, though, with their method. 
However, their approach consumes large amount of time to execute.  

  
3. THE MERTON MODEL 

Merton (1974) is based on the work of Black and Scholes (1973) on option 
pricing and offers a framework for valuing debt issued by a firm. The model assesses 
the structural credit risk of a company by modeling the company's equity as a call 
option on its assets. The model calculates the theoretical pricing of European put 
and call options without considering dividends paid out during the life of the option. 
The original Merton model is based on some simplifying assumptions about the 
structure of the typical firm’s finances. The event of default is determined by the 
market value of the firm’s assets in conjunction with the liability structure of the 
firm. When the value of the assets falls below a certain threshold (the default point), 
the firm is considered to be in default. A critical assumption is that the event of 
default can only take place at the maturity of the debt when the repayment is due. 
Other assumptions include as described in Tudela and Young (2005), include; 

1) All options are European and are exercised only at the time of expiration. 
2) No dividends are paid out. 
3) Market movements are unpredictable (efficient markets). 
4) No commissions are included. 
5) Underlying stocks' volatility and risk-free rates are constant. 
6) Returns on underlying stocks are normally distributed. 
The firm issues two classes of securities: equity and debt. The equity receives 

no dividends. The debt is a pure discount bond where a payment of D is promised at 
date T. If at date T the firm’s asset value TA  exceeds the promised payment, D, the 
debtholders are paid the promised amount and the shareholders receive the 
residual asset value, ( TA D− ). If the asset value is insufficient to meet the 
debtholders’ claims the firm defaults, the debtholders receive a payment equal to 
the asset value, and the shareholders get nothing. The equation connecting between 
asset, equity and debt values is given by Majumder (2006):   

 

                              A E D= +                                                                                    Equation 1 
 
where A  is the total asset value of the firm, E  is the equity value of the firm 

and D is the total amount of the firm’s debt.  
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All debts are mapped into a zero-coupon bond by selecting a debt maturity T . 
When ,TA D> shareholders' stock still has value and the company's debt holders 
are paid in full. If  TA D<  , the business fails on its debt. In this scenario, 
shareholders would receive nothing, and debt holders would have priority claim to 
the remaining asset. The equity value at time T can be expressed as follows:  

                                                    
                               𝐸𝐸𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐴𝐴𝑇𝑇 − 𝐷𝐷, 0)                                                           Equation 2 
 
This is the payout of a European call option with a maturity of T  and a strike 

price of D written on an underlying asset A . The returns on the firm’s assets are 
assumed to be normally distributed and their behavior can be described with the 
following Brownian motion Zieliński (2013): 

 
                               𝑑𝑑𝑑𝑑 = 𝜇𝜇𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜎𝜎𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴                                                        Equation 3 
 
where W is a standard Brownian motion,  Aµ  is the expected return on assets 

which can be equal to the  risk-free interest rate and Aσ  is the  volatility of the firm’s 
assets (the standard deviation of annualized rate of return). 

The firm’s asset value is assumed to obey lognormal diffusion process with a 
constant volatility given by:     

 

                   𝐴𝐴𝑇𝑇 = 𝐴𝐴0𝑒𝑒
��𝜇𝜇𝐴𝐴−

𝜎𝜎𝐴𝐴
2

2 �𝑇𝑇+𝜎𝜎𝐴𝐴√𝑇𝑇𝑊𝑊�
                                                           Equation 4 

 
where 0A  is initial value of the assets specified at 0T =  and TA  is the value of 

the asset at time T . The expected value of the assets at the time T is given by: 
 
                                 𝐸𝐸(𝐴𝐴𝑇𝑇) = 𝐴𝐴0𝑒𝑒𝑟𝑟𝑟𝑟                                                                      Equation 5 
 
The value of equity, viewed as a call on the firm, depends on A  and Aσ  as well 

as the observable variables. A  and Aσ  are unobservable variables. Letting f
denote the call pricing function, and suppressing dependence on the observable 
variables, we write: 

 
                             𝐸𝐸 = 𝑓𝑓(𝐴𝐴,𝜎𝜎𝐴𝐴)                                                                             Equation 6 
 
Using the Black-Scholes assumptions, we get: 
 
                        𝐸𝐸 = 𝑓𝑓(𝐴𝐴,𝜎𝜎𝐴𝐴) = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐴𝐴𝐴𝐴(𝑑𝑑1) − 𝐷𝐷𝑒𝑒−𝑟𝑟𝑟𝑟𝑁𝑁(𝑑𝑑2)                Equation 7 
 
for the call option value, and                                    
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                       𝐸𝐸 = 𝑓𝑓(𝐴𝐴,𝜎𝜎𝐴𝐴) = 𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐷𝐷𝑒𝑒−𝑟𝑟𝑟𝑟𝑁𝑁(−𝑑𝑑2) − 𝐴𝐴𝐴𝐴(−𝑑𝑑1)            Equation 8 
for the put option. 

where ( ).N  is the standard normal cumulative distribution probability 
function, and 

                       ( ) ( )2

1

1ln 2 ,
A A

A

A TDd
T

µ σ

σ

+ +
=                                                            Equation 9 

           ( ) ( )2

2 1

1ln 2A A

A
A

A TDd d T
T

µ σ
σ

σ

+ −
= = −                                                       Equation 10 

 
The value of the debt is determined by A E− . The probability of the company's 

debt default under risk-neutral conditions is  ( )2N d−   . Here, the event that 
shareholders' call option matures out-of-money is what triggers a credit default at 
time T , with the following risk-neutral probability: 

 
        ( ) ( )2 ,TP A D N d< = −                                                                                    Equation 11 

 
Since equity is an option on form value, the volatility of equity, denoted as Eσ , 

is also a function of A  and Aσ . Using another geometric Brownian motion for equity 
E we can obtain  A  and Aσ  and use Ito's Lemma to demonstrate that instantaneous 
volatilities satisfy:  

 

             𝜎𝜎𝐸𝐸 = 𝑔𝑔(𝐴𝐴,𝜎𝜎𝐴𝐴) = 𝐴𝐴𝜎𝜎𝐴𝐴
𝐸𝐸

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

                                                                        Equation 12 

using Black-Scholes equation, it can be shown that ( )1
E N d
A
∂

=
∂

, then (12) we 

becomes: 

             𝜎𝜎𝐸𝐸 = 𝑔𝑔(𝐴𝐴,𝜎𝜎𝐴𝐴) = 𝐴𝐴𝜎𝜎𝐴𝐴
𝐸𝐸
𝑁𝑁(𝑑𝑑1)                                                                 Equation 13 

             𝐸𝐸𝜎𝜎𝐸𝐸 = 𝐴𝐴𝜎𝜎𝐴𝐴𝑁𝑁(𝑑𝑑1)                                                                                    Equation 14 
 

where ( )1N d  is essentially the delta of equity with respect to firm value. The 

price of an equity E  and the volatility Eσ  of its return are observed in the equity 
market. Finally, (7) and (14), can be solved simultaneously for A  and Aσ . 

 
3.1. DISTANCES TO DEFAULT (DD) BY MERTON APPROACH 
Distance to default (DD) is the difference in standard deviations between the 

debt threshold and the anticipated asset value at maturity. It serves as the basis for 
assessing credit risk. It is a standard index that evaluates a company's 
creditworthiness and enables comparisons between different companies and over 
time. There are fewer likelihood of defaults with the higher values of DDs because 
the corporation is more likely to repay debts on schedule. The DD measures how far 
a company's assets are from the obligations whose value would cause a default Chen 
et al. (2010). The distance to default (DD) is computed using the following formula: 
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                             ( ) ( )2log 2A A

A

A TDDD
T

µ σ

σ

+ −
=

                                                             Equation 15 

 
3.2. PROBABILITY OF DEFAULT (PD) BY MERTON APPROACH 
The probability that the asset value will fall below the debt threshold at the end 

of the time horizon is known as the likelihood of default (PD) and is determined by: 
 
               ( ) ( )1PD N DD N DD= − = −                                                                    Equation 16 

         
4. MOODY KMV (MKMV) MODEL 

Oldrich Vasicek, John McQuown, and Stephen Kealhofer founded and debuted 
KMV in 1989. In 2002, Moody's Corporation bought the model and gave the name of 
MKMV model. The model has been continuously updated and improved since the 
acquisition in 2002 by Moody's Corporation. The KMV structural model, now known 
as Moody's KMV (MKMV), is similar to the Merton model but makes more 
reasonable assumptions by including novel ideas such the default point, multi-class 
liabilities, distance to default, and expected default frequency Voloshyn (2015). 

 
4.1. DEFAULT POINT (DPT) 
The Merton model assumes that all liabilities are mapped to zero coupon bonds; 

instead, different classes of liabilities, such as short-term or current liabilities (CL) 
and long-term or total liabilities (LTL), are used in the MKMV model. The MKMV 
model allows for pre-maturity default, which is activated anytime the asset value 
falls below a predetermined level known as the default point (DPT). Typically, 
MKMV suggests that, a company's default point falls between its short-term debt 
and half of its long-term debt Jumbe and Gor (2020). 

 
                      𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐶𝐶𝐶𝐶 + 0.5𝐿𝐿𝐿𝐿𝐿𝐿                                                                     Equation 17 
 
The key takeaway from this is that the company will always have to put short-

term obligations (debt)(CL) ahead of long-term responsibilities (LTL). Additionally, 
default doesn't always happen when a company's asset worth equals the book value 
of all of its liabilities. A firm will, however, go into default when there is no longer 
any difference between its assets and its default point. 

 
4.2. DISTANCE TO DEFAULT (DD) 
In the MKMV model, the default point is a crucial component for calculating the 

distance to default (DD). The DD, which is determined using the supplied relation 
below, is the number of standard deviations the asset value is from the default point. 

 

                   𝐷𝐷𝐷𝐷 = 𝐴𝐴𝑡𝑡−𝐷𝐷𝐷𝐷𝐷𝐷
𝐴𝐴𝑡𝑡𝜎𝜎𝐴𝐴

                                                                                      Equation 18 

 

From the Merton model, the 1-year probability of default is given as ( )N DD−  
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where 

                 𝐷𝐷𝐷𝐷 =
𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝑡𝑡)−𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷)+�𝜇𝜇𝐴𝐴−

1
2𝜎𝜎𝐴𝐴

2�

𝜎𝜎𝐴𝐴
                                                         Equation 19 

 
where Aµ  is the expected return on assets which can be equal to the risk-free 

interest rate. According to empirical research, the quantity 21
2A Aµ σ−   is very close 

to zero hence negligible. So, we approximate (19) to the expression below: 
 

  
𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝑡𝑡)−𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷)+�𝜇𝜇𝐴𝐴−

𝜎𝜎𝐴𝐴
2

2 �

𝜎𝜎𝐴𝐴
≈ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝑡𝑡)−𝑙𝑙𝑙𝑙𝑙𝑙(𝐷𝐷)

𝜎𝜎𝐴𝐴
≈ 𝐴𝐴𝑡𝑡−𝐷𝐷

𝜎𝜎𝐴𝐴𝐴𝐴𝑡𝑡
                                        Equation 20 

 
Replacing the liability D with the default point DPT in (20) we obtain the DD in 

MKMV. 
 

                           𝐴𝐴𝑡𝑡−𝐷𝐷
𝜎𝜎𝐴𝐴𝐴𝐴𝑡𝑡

≈ 𝐴𝐴𝑡𝑡−𝐷𝐷𝐷𝐷𝐷𝐷
𝜎𝜎𝐴𝐴𝐴𝐴𝑡𝑡

                                                                           Equation 21 

 

                               t

A t

A DPTDD
Aσ

−
=                                                                       Equation 22 

 
4.3. EXPECTED DEFAULT FREQUENCY (EDF) 
The MKMV model uses the Expected Default Frequency (EDF), a fundamental 

quantity, to determine the likelihood that a specific firm will go out of business 
within a year. In contrast to the EDF calculated from empirical data in the MKMV, 
the chance of default in the Merton model is estimated from a normal distribution, 
and this does not adhere to the genuine probability. According to Voloshyn (2015), 
a company's EDF is as follows: 

 
                      ( ) t

KMV emp emp
A t

A DPTEDF F DD F
Aσ

 −
= =  

 

                                                  Equation 23 

 

In the MKMV model, a declining empirical function ( )empF ⋅  takes the place of 

the normal distribution function ( )N ⋅  used by the Merton model. The function 

( )empF ⋅  converts a company's distance to default into the percentage of companies 
with similar DD values in an extensive historical database that have defaulted in the 
past. As a result, it follows that two distinct businesses with the same DD will also 
have the same EDF. To make a comparison, in order to obtain the EDF for more than 
a year, the liability D is substituted with the default point DPT in (15); 

 
                      𝐸𝐸𝐸𝐸𝐸𝐸 = 1 − 𝑁𝑁(𝐷𝐷𝐷𝐷)                                                                       Equation 24 
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where 

                     

( ) ( )2log 2A A

A

A TDPTDD
T

µ σ

σ

+ −
=

                              
Equation 25 

 
5. DATA ANALYSIS AND DISCUSSION 

The information on Apple Inc.'s (AAPL) asset values (A), current liabilities (CL), 
and long-term liabilities (LTL) documented from 2019 September 29 to 2022 
September 29 is shown in Table 1. 
Table 1 
Table 1 Current Liabilities, Long Term Liabilities, Total Asset Values and Default Points 

Time (T) 9/29/2019 9/29/2020 9/29/2021 9/29/2022 

Total Asset (A) 338,516,000 323,888,000 351,002,000 352,755,000 

Total debt (D) 108,047,000 112,436,000 124,719,000 120,069,000 

CL 105,718,000 105,392,000 125,481,000 153,982,000 

LTL 142,310,000 153,157,000 162,431,000 148,101,000 

DPT  176,873,000 181,970,500 206,696,500 228,032,500 

Source (Apple Inc.(AAPL) , https://finance.yahoo.com/quote/AAPL/balance-sheet?p=AAPL). 

 
Table 2 shows the calculated default probabilities (PDs and EDF) and distances 

to defaults (DDs) based on information from Table 1. Combining current liabilities 
(CL) with long-term liabilities (17) yields default points (DPT) (LTL). In order to 
calculate the distances to default (DDs), (15) and (25) are used, respectively. In 
order to determine the probability of default (PDs), (16) and (24) are used, 
respectively. The table demonstrates that as the number of years until debt maturity 
rises, the distances to default (DDs) shorten. The table also demonstrates that as 
debt maturity durations in years rise, so do the probabilities of default (PDs). 
Table 2 

Table 2 Effect of Time on Distance to Default and Probability of Default  from Table 1 (𝝈𝝈𝑨𝑨 = 𝟎𝟎.𝟓𝟓, 𝝁𝝁𝑨𝑨 =
𝟎𝟎.𝟐𝟐𝟐𝟐) 

Time (T) 1 2 3 4 5 6 7 8 9 10 

𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇  2.3243 1.7637 1.5382 1.4171 1.3435 1.2959 1.2640 1.2425 1.2281 1.2188 

𝑃𝑃𝐷𝐷𝑇𝑇𝑇𝑇  0.0101 0.0389 0.0620 0.0782 0.0895 0.0975 0.1031 0.1070 0.1097 0.1114 

𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶  2.2184 1.6888 1.4771 1.3642 1.2962 1.2527 1.2240 1.2050 1.1928 1.1853 

𝑃𝑃𝐷𝐷𝐶𝐶𝐶𝐶  0.0133 0.0456 0.0698 0.0863 0.0975 0.1052 0.1105 0.1141 0.1165 0.1179 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  1.7958 1.3900 1.2331 1.1529 1.1072 1.0801 1.0643 1.0556 1.0519 1.0517 

𝑃𝑃𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  0.0363 0.0823 0.1088 0.1245 0.1341 0.1400 0.1436 0.1455 0.1464 0.1464 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  1.2564 1.0086 0.9220 0.8832 0.8660 0.8599 0.8604 0.8649 0.8721 0.8811 

𝐸𝐸𝐸𝐸𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷 0.1045 0.1566 0.1783 0.1886 0.1932 0.1949 0.1948 0.1935 0.1916 0.1891 

 
Figure 1 displays the distances to default (DDs) plotted against the number of 

years until debt maturity (T). The figure indicates that as loan maturity time 
lengthens, DDs decrease. However, DDs generated using the firm's total debt (TD) 
are higher than DDs generated using CL, LTL, and DPT. According to this result, 

https://www.granthaalayahpublication.org/ojs-sys/index.php/ijoest/
https://finance.yahoo.com/quote/AAPL/balance-sheet?p=AAPL


George Jumbe, and Ravi Gor 
 

International Journal of Engineering Science Technologies 37 
 

businesses that think about using current or short-term liabilities are more likely to 
default. However, as investment duration increases, the firm's stability to default 
declines; as a result, this study suggests that firms should think about adopting 
short-term investments for their stability. The image likewise depicts the DDS and 
PDs as having an inversely proportional connection. The PDs rise when the DDs fall, 
and vice versa. This suggests that businesses with larger DDs will experience a 
decreased likelihood of default. The odds of default are displayed against the dates 
of the debt maturities in Figure 2 The graph demonstrates that the PDs produced by 
DPT are more than those produced by TD, CL, and LTL. This result demonstrates 
that companies utilising DPT in their investment schemes are much more likely to 
default than companies using TD, CL, or LTL. The image also depicts the exponential 
rise in default probability before they begin to fall at some point in the future.  

Figure 1 

                                                                       
Figure 1 Distances to Default vs Time                 

 
Figure 2 

                                                                       
Figure 2 Probability of Default vs Time 

 
The impact of altering volatility (σ ) on the DDs and PDs is seen in Table 3. The 

table demonstrates a decline in DDs when volatility rises. This research suggests 
that because volatility lowers a firm's stability to default, higher volatility firms will 
default more frequently. The table also demonstrates an increase in PDs as volatility 
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rises, suggesting that businesses with high volatility have a higher chance of 
defaulting. 
Table 3 

Table 3 Effect of Volatility on Distance to Default and Probability of Default  from Table 1 (𝝁𝝁𝑨𝑨 = 𝟎𝟎.𝟐𝟐𝟐𝟐, 
𝑻𝑻 = 𝟏𝟏 year) 

𝜎𝜎𝐴𝐴 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇  12.821
4 

6.3357 4.1405 3.0178 2.3243 1.8452 1.4888 1.2089 0.9801 0.7871 

𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶  12.291
9 

6.0709 3.9640 2.8855 2.2184 1.7570 1.4131 1.1427 0.9213 0.7342 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  10.178
8 

5.0144 3.2596 2.3572 1.7958 1.4048 1.1113 0.8786 0.6865 0.5229 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  7.4821 3.6661 2.3607 1.6830 1.2564 0.9553 0.7260 0.5415 0.3869 0.2532 

𝑃𝑃𝐷𝐷𝑇𝑇𝑇𝑇 0.0 1.1813
e-10 

1.7330
e-05 

1.2729
e-03 

1.0055
e-02 

3.2502
e-02 

6.8274
e-02 

1.1335
e-01 

1.6350
e-01 

2.1560
e-01 

𝑃𝑃𝐷𝐷𝐶𝐶𝐶𝐶  0.0 6.3586
e-10 

3.6859
e-05 

1.9542
e-03 

1.3265
e-02 

3.9461
e-02 

7.8810
e-02 

1.2657
e-01 

1.7844
e-01 

2.3142
e-01 

𝑃𝑃𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  0.0 2.6599
e-07 

5.5784
e-04 

9.2067
e-03 

3.6266
e-02 

8.0040
e-02 

1.3323
e-01 

1.8981
e-01 

2.4619
e-01 

3.0053
e-01 

𝐸𝐸𝐸𝐸𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷 3.6526
e-14 

1.2315
e-04 

9.1198
e-03 

4.6184
e-02 

1.0448
e-01 

1.6970
e-01 

2.3391
e-01 

2.9407
e-01 

3.4941
e-01 

4.0005
e-01 

 
The decline of DDs versus volatilities is depicted in Figure 3 When volatility 

rises, DDs also fall, and vice versa. The DDs decrease with increasing volatilities. The 
exponential increase of the PDs versus volatilities is depicted in Figure 4 With rising 
volatilities, PDs grow exponentially, raising the risk of default. 
Figure 3 

                                                                      
Figure 3 Distances to Default vs Volatility 
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Figure 4 

                                                                       
Figure 4 Probability of Default vs Volatility 

 
The impact of different interest rates (r) on the DDs and PDs is shown in Figure 

4. The table displays the DDs and rates as a  linear relationship. With an increase in 
interest rates, the DDs rise. This indicates that high interest rates lead to an increase 
in DDs, making it more likely that the company will eventually default. Lower PDs 
are seen with higher DDs. The table also demonstrates the decline in PDs in 
comparison to the rate increase. High interest rates thereby lessen the likelihood of 
default (PD). 
Table 4 

Table 4 Effect of Rates on Distance to Default and Probability of Default  from Table 1 (𝝈𝝈𝑨𝑨 =
𝟎𝟎.𝟓𝟓, 𝑻𝑻 = 𝟏𝟏 year) 

Rate 
(r) 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

𝐷𝐷𝐷𝐷𝑇𝑇𝑇𝑇  15.72
14 

7.785
7 

5.107
1 

3.742
8 

2.904
3 

2.328
6 

1.903
1 

1.571
4 

1.302
4 

1.077
1 

𝐷𝐷𝐷𝐷𝐶𝐶𝐶𝐶  15.19
19 

7.520
9 

4.930
6 

3.610
5 

2.798
4 

2.240
3 

1.827
4 

1.505
2 

1.243
5 

1.024
2 

𝐷𝐷𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  13.07
88 

6.464
4 

4.226
3 

3.082
2 

2.375
8 

1.888
1 

1.525
5 

1.241
1 

1.008
8 

0.812
9 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷  10.38
21 

5.116
1 

3.327
4 

2.408
0 

1.836
4 

1.438
7 

1.140
3 

0.904
0 

0.709
1 

0.543
2 

𝑃𝑃𝐷𝐷𝑇𝑇𝑇𝑇 1.767
7e-02 

1.060
e-02 

6.135
0e-03 

3.422
3e-03 

1.840
5e-03 

9.537
1e-04 

4.761
0e-04 

2.289
2e-04 

1.060
e-04 

4.725
3e-05 

𝑃𝑃𝐷𝐷𝐶𝐶𝐶𝐶  2.283
8e-02 

1.396
1e-02 

8.234
1e-03 

4.683
3e-03 

2.568
0e-03 

1.357
1e-03 

6.910
3e-04 

3.389
4e-04 

1.601
1e-04 

7.282
5e-05 

𝑃𝑃𝐷𝐷𝐿𝐿𝐿𝐿𝐿𝐿  0.057
5 

0.037
9 

0.024
1 

0.014
8 

0.008
8 

0.005
0 

0.002
7 

0.001
5 

0.000
7 

0.000
4 

𝐸𝐸𝐸𝐸𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷 0.150
0 

0.108
1 

0.075
4 

0.050
9 

0.033
1 

0.020
9 

0.012
7 

0.007
4 

0.004
2 

0.002
3 

 
The linear relationship between DDs and rates is depicted in Figure 5. As 

interest rates rise, the DDs rise as well. Since asset values will be well outside of the 
default threshold, an increase in DDs implies stability of the firm from default. The 
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inversely proportional link between the PDs and rates is shown in Figure 4 With 
rising interest rates and vice versa, the PDs decline. This suggests that a high interest 
rate lowers the risk of a default by the company. 
Figure 5 

                                                                      
Figure 5 Distances to Default vs Rates          

 
Figure 6 

                                                                       
Figure 6 Probability of Default vs Rates 

 
6. CONCLUSION AND SUGGESTION FOR FUTURE RESEARCH 

In this study, the effect of changes in interest rates, volatility, and debt maturity 
times on the likelihood of default was examined. The study examined the results of 
the Merton and MKMV strategies for determining the distances to default (DDs) and 
probability of defaults (PDs). The results show that DDs and PDs produced by the 
MKMV technique (sDPT) are significant when compared to those produced by the 
Merton approach in each scenario (sTD, sSTL and sLTL). The DDs appear to be 
contracting for longer maturities in Figure 1. This shows that as maturities get 
longer, the company's financial situation gets worse. The development of PDs for 
longer maturities is seen in Figure 2 This shows that businesses are very vulnerable 
to defaulting on loans with longer maturities. The decline of DDs versus volatilities 
is depicted in Figure 3 According to this, asset values converge to the default 
threshold value as volatilities rise, increasing the chance of default for greater 
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volatilities. The development of the PDs against volatilities is depicted in Figure 4 
The likelihood of default rises as volatilities rises. The linear relationship between 
DDs and rates is depicted in Figure 5. As interest rates rise, the DDs rise as well. 
Since asset values will be well outside of the default threshold, an increase in DDs 
implies stability of the firm from default. The inversely proportional link between 
the PDs and rates is shown in Figure 6. With rising interest rates and vice versa, the 
PDs decline. This suggests that a high interest rate lowers the risk of a default by the 
company. Future research will examine the impact of changes in interest rates, 
volatility, and debt maturity dates on credit ratings and credit quality. 
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