Keywords: BNF, Standard, HPLC, Bacteria, Triticum Aestivum


In this study, we identified the presence and quantity of flavonoids produced in wheat roots inoculated with rhizobacteria. Our goal is to confirm the efficiency of standard isolates and show new strains with biotechnological potential to promote plant growth. The experiment was carried out with different isolates under inoculation in the following situations: T1-Azospirillum brasiliense; T2-Herbaspirillum seropedicae; T3-Azospirillum brasiliense and Herbaspirillum seropedicae co-inoculation; T4-native Enterobacter sp. nº 203; T5- native Enterobacter sp. nº 208; T6-native Enterobacter sp. nº 493; T7-Control only under nitrogen fertilization (N+); T8-Control without nitrogen (N-) and bacterial inoculation. Agronomic characteristics were assessed after 42 days of inoculation. Identification and quantification of flavonoids were carried out through HPLC, using an analytical curve with four standards based on Coumarin, Quercetin, Isoflavone and Rutin. Regarding the production of total flavonoids, two (203 and 493) out of the three native strains we tested were statistically significant, exceeding the values obtained from the inoculation of standard strains, which presented association with grasses (Azopirilum e Herbaspirillum). Standard bacteria, when inoculated in isolation, presented, along with those that received N+ treatment, the highest values for length and root and aerial part dry mass. New studies need to be carried out in order to confirm the technological use of these native strains as inoculant, as these bacteria may contribute to Biological Nitrogen Fixation (BNF) in wheat culture, either by competition or synergism.


Download data is not yet available.

Author Biographies

Luciana Grange, Universidade Federal do Paraná

Departamento de Ciências Agronômicas

Isac George Rosset, Universidade Federal do Paraná

Departamento de Engenharia e Exatas


Camargo, M. P. D .; Moraes, M. H. D. D .; Menten, J. O. M. Efficiency of blotter test and agar culture medium to detect fusarium graminearum and pyricularia grisea in wheat seeds. Journal of Seed Science, 39 (3): 297-302, 2017. DOI:

Conab. Acompanhamento safra brasileira de grãos, v. 8, n.1, Safra 2020/21, Brasília, p. 1-77, 2020. Available at:

SEAB. Paraná State Secretary of Agriculture and Supply. [Accessed on 14 Feb. 2017] Available at: <>

Oliveira, F. 10th Meeting of the Wheat and Triticale Research Commission. National wheat forum, EMATER, Londrina, 2016.

Brum, A. L .; Muller, P. K. The reality of the wheat chain in Brazil: the link between producers / cooperatives. Rural economy and sociology magazine, 46 (1): 145-169, 2008.

Hungary, M .; Campo, R.J .; Mendes, I.C. The importance of the biological nitrogen fixation process for soybean culture: an essential component for the competitiveness of the Brazilian product. Londrina: Embrapa Soy, 2007. 80p.

Dobbelaere, S.; Croonenborghs, A. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on development and nitrogen uptake of spring wheat and grain maize. Biology and Fertility of Soils, 36: 284-297, 2002. DOI:

Picazevicz, A. A. C .; Kusdra, J. F .; Moreno, A. L .. Maize growth in response to Azospirillum brasilense, Rhizobium tropici, molybdenum and nitrogen. Brazilian Journal of Agricultural and Environmental Engineering, 21 (9): 623-627, 2017. DOI:

Zambrano-Moreno, D .; Avellaneda-Franco, L .; Zambrano, G .; Bonilla-Buitrago, R. Scientometric analysis of Colombian research on bio-inoculants for agricultural production. Universitas Scientiarum, 21 (1): 63-81, 2016. DOI:

Araújo E. O. Quantification of the contribution of diazotrophic bacteria to nitrogen absorption by corn culture. Doctoral thesis, UFGD. Dourados Mato Grosso Do Sul, 2014.

Kobayashi, H., Naciri-Graven, Y., Broughton, W. J., Perret, X. Flavonoids induce temporal shifts in gene-expression of nod-box controlled loci in Rhizobium sp. NGR234. Molecular Microbiology, 51: 335-347, 2004. DOI:

They call, A., Sanguin H. Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillum - Oryza sativa association. Phytochemistry, 87: 65-77, 2013. DOI:

Petrussa, E .; Braidot, E .; Zancani, M .; Paresson, C .; Bertolini, A .; Patui, S .; et al. Plant Flavonoids-Biosynthesis, Transport and Involvement in Stress Responses. International Journal of Molecular Sciences. 14: 14950-14973, 2013. DOI:

Rosa, E. A .; Silva, B. C .; Silva, F. M .; Tanaka, C. M. Am; Peralta, R. M .; Oliveira, C. M. A .; et al. Flavonoids and antioxidant activity in Palicourea rigida kunth, Rubiaceae. Brazilian Journal of Pharmacognosy, 20 (4): 484-488, 2010. DOI:

Santos J. V .; Ribeiro, P. R. A .; Assis, E. S .; Soares, I. C .; Moreira, F. M. S. Formononetina and phosphorus do not affect the density of associative nitrogen-fixing bacteria in the corn rhizosphere. Encyclopedia Biosphere, 11 (21); 1121-1128, 2015.

Silva, S. R .; Pires, J. L. F. Response of BRS Guamirim wheat to the application of Azospirillum, nitrogen and growth-promoting substances. Agronomic Science Magazine, 48 (4): 631-638, 2017. DOI:

Coodetec. Southern product guide, 2015. Details of the cultivar. [Accessed on: 18 Jan. 2017]. Available at: <>

Oliveira, K. S. Influence of substrates on the germination of Anadenanthera colubrina seeds under greenhouse conditions. Tree Magazine, 36 (6): 1073-1078, 2012. DOI:

Pinheiro, C. G .; Lazarotto M .; Muniz M. F. B .; Redin C.G .; Santos M. V .. Effect of superficial asepsis on germination and fungi incidence in seeds of forest species. Brazilian forest research, 36 (87): 253-260, 2016. DOI:

Chabariberi, R. A. O .; Pozzi, A. C. S .; Zeraik, M. L .; Yariwake, J. H. Spectrometric determination of the flavonoids in the leaves of Maytenus (Celastraceae) and Passiflora (Passifloraceae) and comparison with the CLAE-UV method. Brazilian Journal of Pharmacognosy, 19 (4): 860-864, 2009. DOI:

Lin, J. Y.; Tang, C. Y. Determination of total phenolic and flavonoid contents in select fruits and vegetables, as well as their simulatory effects on mouse splenocyte ploriferation. Food Chemistry, 101:140-147, 2007. DOI:

Veloso, P. A .; Souza, F. M .; Pimenta, A. T. A .; Silveira, E. R .; Lima, M. A. New flavonoids from the root and stem of Platymiscium floribundum vog .. Brazilian Chemical Society (SBQ), 23: 1239-1243, 2012. DOI:

Sobrinho, T. J. S. P. Optimization of analytical methodology for the measurement of flavonoids from Bauhinia cheilantha (Bongard) Steudel. New Chemistry, 33 (2): 288-291, 2010. DOI:

Xavier, T.F.; Araújo, A.S.F.; Santos, V.B .; Campos, F.L. Inoculation and nitrogen fertilization on nodulation and productivity of cowpea beans. Rural Science, 38 (7): 2037-2041, 2008. DOI:

Skonieski, F.R.; Viégas, J.; Martin, T.N .; Nornberg, J.L .; Meinerz, G.R .; Tonin, T.J .; et al. Effect of seed inoculation with Azospirillum brasilense and nitrogen fertilization rates on maize plant yield and silage quality. Brazilian Journal of Animal Science, 46 (9): 722-730, 2017. DOI:

Zhang, H. M., Forde, B. G. Regulation of arabidopsis root development by nitrate availability. Journal of Experimental Botany, 51: 342, p. 51-59. 2000. DOI:

Hassan, S.; Mathesius, U. The role of flavonoids in root – rhizosphere signalling: opportunities and challenges for improving plant – microbe interactions. Journal of Experimental Botany, 63 (9): 3429-3444, 2012.

Taylor, L. P.; Grotewold, E. Flavonoids as developmental regulators. Current Opinion in Plant Biology, 8: 317-23, 2005. DOI:

Lakhanpal, P., Rai, D.K. Quercetin: The Versatile Flavonoid. Internet Journal of Medical Update, 2 (2): 22-37, 2007.

Agati G., Tattini M. Multiple functional roles of flavonoids in photoprotection. New Phytologist, 186: 786-93, 2010.31. Viana, E. M.; Kiehl, J. C. Nitrogen and potassium doses in wheat growth. Bragantia, 69(4):975-982, 2010.

Kharazian, N.; Rahiminejad, M. R. Study of phenolic constituents of Triticum L. (Poaceae) species in Iran. Iranian Journal of Science & Technology A, 33(4):309-315, 2009.

BRITO, M.P.; MURAOKA, T.; SILVA, E. C. Contribution of biological nitrogen fixation, nitrogen fertilizer and soil nitrogen without the development of beans and cowpea. Bragantia, 70 (1): 206-215, 2011.

Sakakibara, H. Cytokinins: Activity, biosynthesis and translocation. Annual Review of Plant Biology, 57: 431-449, 2006.

Silva, A. A.; Delatorre, C. A. Changes in root architecture in response to the availability of phosphorus and nitrogen. Revista de Ciências Agroveterinário, 8 (2): 152-163, 2014.

Souza, W. P. Initial wheat development under nitrogen doses in the Cerrado Red Latosol. Brazilian Journal of Agricultural and Environmental Engineering, 17 (6): 575-580, 2013.

How to Cite
Hércules Tancredo Moreira, Luciana Grange, Isac George Rosset, & Missio, R. F. (2020). IDENTIFICATION AND QUANTIFICATION OF WHEAT ROOTS FLAVONOIDS INOCULATED WITH NATIVE RHIZOBACTERIA. International Journal of Research -GRANTHAALAYAH, 8(10), 350-356.

Most read articles by the same author(s)