PHYTOCHEMICAL SCREENING, ANTIOXIDANT, ANTI-CYTOTOXIC AND ANTICANCER EFFECTS OF GALINSOGA PARVIFLORA AND VERNONIA POLYANTHES (ASTERACEAE) EXTRACTS

Authors

  • Sula M. V. Feleti Laboratório de Genética Vegetal e Toxicológica, Departamento de Ciências Biológicas, Universidade Federal do Espirito Santo, Vitória, Espírito Santo – Brazil
  • Renê L. Aleluia Laboratório de Genética Vegetal e Toxicológica, Departamento de Ciências Biológicas, Universidade Federal do Espirito Santo, Vitória, Espírito Santo – Brazil
  • Suiany V. Gervásio Laboratório de Genética Vegetal e Toxicológica, Departamento de Ciências Biológicas, Universidade Federal do Espirito Santo, Vitória, Espírito Santo – Brazil
  • Jean Carlos V. Dutra Laboratório de Genética Vegetal e Toxicológica, Departamento de Ciências Biológicas, Universidade Federal do Espirito Santo, Vitória, Espírito Santo – Brazil https://orcid.org/0000-0003-3893-9470
  • Jessica R. P. Oliveira Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde - CCS, Universidade Federal do Espirito Santo - UFES, Marechal Campos Av., 1468, Vitoria 29043-900, ES, Brazil
  • Rita de Cássia R. Gonçalves Programa de Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde - CCS, Universidade Federal do Espirito Santo - UFES, Marechal Campos Av., 1468, Vitoria 29043-900, ES, Brazil
  • Claudia M. Jamal Laboratório de Química de Produtos Naturais, Departamento de Ciências Farmacêuticas, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Brazil
  • Ricardo M. Kuster Laboratório de Cromatografia, Departamento de Química, Universidade Federal do Espírito Santo, Vitória, Espírito Santo – Brazil
  • Beatriz G. Brasileiro Instituto Federal do Sudeste de Minas Gerais, Campus Muriaé – Minas Gerais – Brazil
  • Maria do Carmo P. Batitucci Laboratório de Genética Vegetal e Toxicológica, Departamento de Ciências Biológicas, Universidade Federal do Espirito Santo, Vitória, Espírito Santo – Brazil

DOI:

https://doi.org/10.29121/granthaalayah.v8.i10.2020.1782

Keywords:

Phenolic Content, Mass Spectrometry, Antioxidant Activity, MTT Assay

Abstract [English]

The study was designed to investigate the chemical composition and the biological effects of G. parviflora and V. polyanthes ethanolic extracts in vitro. Total content of phenols, flavonoids and tannins was quantified by spectrophotometry; chemical characterization was permed by mass spectrometry (ESI (-) FT-ICR MS and APCI (+) FT-ICR MS analysis). Antioxidant activities were determined by FRAP and Fe2+ chelating methods. Extracts cytotoxicity was evaluated in human lymphocytes, sarcoma-180 (S-180) and human gastric adenocarcinoma (AGS) cells, by MTT assay. V. polyanthes presented higher total content of tannins and G. parviflora presented higher amount of phenols and flavonoids. Chemical characterization showed the presence of flavonoids, phenolic acids and sesquiterpene lactones in V. polyanthes extract, and steroids, phenolic acids and fatty acids (Poly Unsaturated Fatty Acids - PUFA) in G. parviflora extract. V. polyanthes extract stood out in the Fe2+ chelation test. G. parviflora extract did not present outstanding antioxidant results in the tested protocols. Both species showed a tendency to promote cytotoxicity in human lymphocyte cells. Regarding the antiproliferative effect, both species were able to reduce S-180 cell viability and G. parviflora extract showed high antiproliferative potential in the assay with AGS cells. These findings reinforce the medicinal use of these plants, as well as suggest their potential use for the development of new drugs and for the treatment of cancers.

Downloads

Download data is not yet available.

References

Abad MJ, Bermejo P, Villar A. An approach to the genus Tanacetum L.(Compositae): phytochemical and pharmacological review. Phyther Res 1995;9(2):79–92. DOI: https://doi.org/10.1002/ptr.2650090202

Emerenciano VP, Militão J, Campos CC, Romoff P, Kaplan MAC, Zambon M, et al. Flavonoids as chemotaxonomic markers for Asteraceae. Biochem Syst Ecol 2001;29(9):947–957. DOI: https://doi.org/10.1016/S0305-1978(01)00033-3

Rivero SA, Atahuachil M, Saravia E, Lopez A. Diversidad florística medicinal y potencial etnofarmacológico de las plantas de los valles secos de Cochabamba-Bolivia. Rev Boliv Ecol y Conserv Ambient 2013;(12).

Lorenzi H, Matos FJ. Plantas medicinais no Brasil: nativas e exóticas. 2002.

Chadwick M, Trewin H, Gawthrop F, Wagstaff C. Sesquiterpenoids lactones: benefits to plants and people. Int J Mol Sci 2013;14(6):12780–12805. DOI: https://doi.org/10.3390/ijms140612780

Lannert H, Hoyer S. Intracerebroventricular administration of streptozotocin causes long-term diminutions in learning and memory abilities and in cerebral energy metabolism in adult rats. Behav Neurosci 1998;112(5):1199. DOI: https://doi.org/10.1037/0735-7044.112.5.1199

Verdi LG, Brighente IMC, Pizzolatti MG. Gênero Baccharis (Asteraceae): aspectos químicos, econômicos e biológicos. Quim Nova 2005;28(1):85–94. DOI: https://doi.org/10.1590/S0100-40422005000100017

Ali S, Zameer S, Yaqoob M. Ethnobotanical, phytochemical and pharmacological properties of Galinsoga parviflora (Asteraceae): A review. Trop J Pharm Res 2017;16(12).

Chanaj-Kaczmarek J, Wysocki M, Karachitos A, Wojcińska M, Bartosz G, Matławska I, et al. Effects of plant extract antioxidative phenolic compounds on energetic status and viability of Saccharomyces cerevisiae cells undergoing oxidative stress. J Funct Foods 2015;16:364–377. DOI: https://doi.org/10.1016/j.jff.2015.04.046

Maroyi A. Use of weeds as traditional vegetables in Shurugwi District, Zimbabwe. J Ethnobiol Ethnomed 2013;9(1):60. DOI: https://doi.org/10.1186/1746-4269-9-60

Balogun FO, Ashafa AOT. A review of plants used in South African Traditional Medicine for the management and treatment of hypertension. Planta Med 2019;85(04):312–334. DOI: https://doi.org/10.1055/a-0801-8771

Manzanero-Medina GI, Vásquez-Dávila MA, Lustre-Sánchez H, Pérez-Herrera A. Ethnobotany of food plants (quelites) sold in two traditional markets of Oaxaca, Mexico. South African J Bot 2020;130:215–223. DOI: https://doi.org/10.1016/j.sajb.2020.01.002

Passos MAB. PLANTAS ALIMENTÍCIAS NÃO CONVENCIONAIS (PANC) OCORRENTES EM RORAIMA. Rev Eletrônica Científica Ensino Interdiscip 2019;5(14):388–404. DOI: https://doi.org/10.21920/recei72019514388404

Bazylko A, Stolarczyk M, Derwińska M, Kiss AK. Determination of antioxidant activity of extracts and fractions obtained from Galinsoga parviflora and Galinsoga quadriradiata, and a qualitative study of the most active fractions using TLC and HPLC methods. Nat Prod Res 2012;26(17):1584–1593. DOI: https://doi.org/10.1080/14786419.2011.582469

Surywanshi V, Yadava RN. New Potential Allelochemicals from Galinsoga parviflora CAV. Chem Sci Rev Lett 2015;4:405–413.

Studzińska-Sroka E, Dudek-Makuch M, Chanaj-Kaczmarek J, Czepulis N, Korybalska K, Rutkowski R, et al. Anti-inflammatory Activity and Phytochemical Profile of Galinsoga Parviflora Cav. Molecules 2018;23(9):2133. DOI: https://doi.org/10.3390/molecules23092133

Zhang Z, Chen Y, Jiang X, Zhu P, Zeng Y, Tang T, et al. Characterization of the complete chloroplast genome sequence of Galinsoga parviflora and its phylogenetic implications. Mitochondrial DNA Part B 2019;4(2):2106–2108. DOI: https://doi.org/10.1080/23802359.2019.1623106

Alves VFG, Neves LJ. Anatomia foliar de Vernonia polyanthes Less (Asteraceae). Rev Univ Rural Sér Ciên da Vida 2003;22:1–8.

Gomes JAO, Teixeira DA, Marques APS, Bonfim FPG. Diferentes substratos na propagação por estaquia de assa-peixe (Vernonia polyanthes Less). Rev Bras Plantas Med 2015;17(4):1177–1181. DOI: https://doi.org/10.1590/1983-084x/15_008

Souza PVR de, Mazzei JL, Siani AC, Behrens M das DD. Vernonia polyanthes (Spreng.) Less.: uma visão geral da sua utilização como planta medicinal, composição química e atividades farmacológicas. 2017. DOI: https://doi.org/10.5935/2446-4775.20170021

Martucci MEP. Análise da interação ecoquímica entre a lagarta-do-girassol Chlosyne lacinia (Lepidoptera: Nymphalidae) e as Asteraceae Tithonia diversifolia e Vernonia polyanthes utilizando cromatografia líquida acoplada à espectrometria de massas. 2012.

Silveira RR, Rúbio CR, Alves M. Diuresis and arterial pressure modification in anesthetized Wistar rats, after oral administration of" assa-peixe"(Vernonia polyanthes Less.) infusion. Rev Bras Plantas Med 2000;2(2):31–35.

Temponi V dos S. Investigação química e atividades farmacológicas de Vernonia polyanthes Less. 2012.

Barbastefano V, Cola M, Luiz-Ferreira A, Farias-Silva E, Hiruma-Lima CA, Rinaldo D, et al. Vernonia polyanthes as a new source of antiulcer drugs. Fitoterapia 2007;78(7–8):545–551. DOI: https://doi.org/10.1016/j.fitote.2007.07.003

Probst I da S. Atividade antibacteriana de óleos essenciais e avaliação de potencial sinergético. 2012.

Guerra-Santos IJ, Rocha JD, Vale CR, Sousa WC, Teles AM, Chen-Chen L, et al. Vernonanthura polyanthes leaves aqueous extract enhances doxorubicin genotoxicity in somatic cells of Drosophila melanogaster and presents no antifungal activity against Candida spp. Brazilian J Biol 2016;76(4):928–936. DOI: https://doi.org/10.1590/1519-6984.04615

Moreira RRD, Martins GZ, Varandas R, Cogo J, Perego CH, Roncoli G, et al. Composition and leishmanicidal activity of the essential oil of Vernonia polyanthes Less (Asteraceae). Nat Prod Res 2017;31(24):2905–2908. DOI: https://doi.org/10.1080/14786419.2017.1299723

da Silveira RR, Foglio MA, Gontijo JAR. Effect of the crude extract of Vernonia polyanthes Less. on blood pressure and renal sodium excretion in unanesthetized rats. Phytomedicine 2003;10(2–3):127–131. DOI: https://doi.org/10.1078/094471103321659825

Silva NCC, Barbosa L, Seito LN, Fernandes Junior A. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants. Nat Prod Res 2012;26(16):1510–1514. DOI: https://doi.org/10.1080/14786419.2011.564582

Desmarchelier C, Slowing K, Ciccia G. Anti-inflammatory activity of Pothomorphe peltata leaf methanol extract. Fitoterapia 2000;71(5):556–558. DOI: https://doi.org/10.1016/S0367-326X(00)00166-0

Krishnaiah D, Sarbatly R, Nithyanandam R. A review of the antioxidant potential of medicinal plant species. Food Bioprod Process 2011;89(3):217–233. DOI: https://doi.org/10.1016/j.fbp.2010.04.008

Choi JS, Chung HY, Kang SS, Jung MJ, Kim JW, No JK, et al. The structure–activity relationship of flavonoids as scavengers of peroxynitrite. Phyther Res 2002;16(3):232–235. DOI: https://doi.org/10.1002/ptr.828

Ahmad N, Zuo Y, Lu X, Anwar F, Hameed S. Characterization of free and conjugated phenolic compounds in fruits of selected wild plants. Food Chem 2016;190:80–89. DOI: https://doi.org/10.1016/j.foodchem.2015.05.077

Bastos DHM, Rogero MM, Arêas JAG. Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. Arq Bras Endocrinol Metabol 2009;53(5):646–656. DOI: https://doi.org/10.1590/S0004-27302009000500017

Martins N, Petropoulos S, Ferreira ICFR. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre-and post-harvest conditions: A review. Food Chem 2016;211:41–50. DOI: https://doi.org/10.1016/j.foodchem.2016.05.029

Zhang Q, Zhang J, Shen J, Silva A, Dennis DA, Barrow CJ. A simple 96-well microplate method for estimation of total polyphenol content in seaweeds. In: Eighteenth International Seaweed Symposium. Springer, 2006: 219–224. DOI: https://doi.org/10.1007/978-1-4020-5670-3_27

Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 1999;64(4):555–559. DOI: https://doi.org/10.1016/S0308-8146(98)00102-2

Pansera MR, Santos AC, Paese K, Wasum R, Rossato M, Rota LD, et al. Análise de taninos totais em plantas aromáticas e medicinais cultivadas no Nordeste do Rio Grande do Sul. Rev bras Farm 2003;13(1):17–22. DOI: https://doi.org/10.1590/S0102-695X2003000100002

Rufino M, ALVES RE, De Brito ES, De Morais SM, SAMPAIO C de G, PÉREZ-JIMÉNEZ J, et al. Metodologia científica: determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Embrapa Agroindústria Trop Comun técnico 2006.

Tang SZ, Kerry JP, Sheehan D, Buckley DJ. Antioxidative mechanisms of tea catechins in chicken meat systems. Food Chem 2002;76(1):45–51. DOI: https://doi.org/10.1016/S0308-8146(01)00248-5

Marullo R, Werner E, Degtyareva N, Moore B, Altavilla G, Ramalingam SS, et al. Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. PLoS One 2013;8(11):e81162. DOI: https://doi.org/10.1371/journal.pone.0081162

Vencioneck Dutra J, Moisés Ferreira J, Costalonga Pereira P, Ben-Hur de Oliveira J, Vitorino Gervásio S, Bernardes Xavier M, et al. Cereus jamacaru DC Hydroalcoholic Extract Promotes Anti-Cytotoxic and Antitumor Activity. Pharmaceuticals 2018;11(4):130. DOI: https://doi.org/10.3390/ph11040130

Serpeloni JM, dos Reis MB, Rodrigues J, dos Santos LC, Vilegas W, Varanda EA, et al. In vivo assessment of DNA damage and protective effects of extracts from Miconia species using the comet assay and micronucleus test. Mutagenesis 2008;23(6):501–507. DOI: https://doi.org/10.1093/mutage/gen043

Borges LL, Alves SF, Sampaio BL, Conceição EC, Bara MTF, Paula JR. Environmental factors affecting the concentration of phenolic compounds in Myrcia tomentosa leaves. Rev Bras Farmacogn 2013;23(2):230–238. DOI: https://doi.org/10.1590/S0102-695X2013005000019

Gobbo-Neto L, Lopes NP. Medicinal plants: factors of influence on the content of secondary metabolites. Quim Nova 2007;30(2):374–381.

Kutchan TM. Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol 2001;125(1):58–60. DOI: https://doi.org/10.1104/pp.125.1.58

Minateli MM, Del-Vechio-Vieira G, Yamamoto CH, Araújo A, Rodarte MP, Alves MS, et al. PHYTOCHEMICAL CONTENTS AND BIOLOGICAL PROPERTIES OF VERNONIA POLYANTHES LESS. Int J Pharm Sci Res 2017;8(3):1427.

Rodrigues K, Chibli LA, Santos B, Temponi VS, Pinto NCC, Scio E, et al. Evidence of bioactive compounds from Vernonia polyanthes leaves with topical anti-inflammatory potential. Int J Mol Sci 2016;17(12):1929. DOI: https://doi.org/10.3390/ijms17121929

Bohlmann F, Jakupovic J, Gupta RK, King RM, Robinson H. Allenic germacranolides, bourbonene derived lactones and other constituents from Vernonia species. Phytochemistry 1981;20(3):473–480. DOI: https://doi.org/10.1016/S0031-9422(00)84169-2

Igual MO, Martucci MEP, Da Costa FB, Gobbo-Neto L. Sesquiterpene lactones, chlorogenic acids and flavonoids from leaves of Vernonia polyanthes Less (Asteraceae). Biochem Syst Ecol 2013;(51):94–97. DOI: https://doi.org/10.1016/j.bse.2013.08.018

Martucci MEP, De Vos RCH, Carollo CA, Gobbo-Neto L. Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PLoS One 2014;9(4):e93149. DOI: https://doi.org/10.1371/journal.pone.0093149

Martucci MEP, Gobbo-Neto L. Differential secondary metabolite accumulation and performance of Chlosyne lacinia fed with Tithonia diversifolia or Vernonia polyanthes. Biochem Syst Ecol 2016;68:156–162. DOI: https://doi.org/10.1016/j.bse.2016.07.009

PEREIRA MA, CASTRO RN. Perfil cromatográfico das substâncias fenólicas presentes em extratos de mel de assa peixe e avaliação de seu poder antioxidante. Univ Fed Rural do Rio Janeiro (Monografia) Seropédica-SP 2010.

Bohlmann F, Zdero C, King RM, Robinson H. Further hirsutinolides from Vernonia polyanthes. Phytochemistry 1983;22(12):2863–2864. DOI: https://doi.org/10.1016/S0031-9422(00)97718-5

Dudek MK, Dudkowski Ł, Bazylko A, Kaźmierski S, Kiss AK. Caffeic acid derivatives isolated from the aerial parts of Galinsoga parviflora and their effect on inhibiting oxidative burst in human neutrophils. Phytochem Lett 2016;16:303–310. DOI: https://doi.org/10.1016/j.phytol.2016.05.007

Mostafa I, Abd El-Aziz E, Hafez S, El-Shazly A. Chemical constituents and biological activities of Galinsoga parvifl ora Cav.(Asteraceae) from Egypt. Zeitschrift für Naturforsch C 2013;68(7–8):285–292. DOI: https://doi.org/10.1515/znc-2013-7-805

Bazylko A, Borzym J, Parzonko A. Determination of in vitro antioxidant and UV-protecting activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. J Photochem Photobiol B Biol 2015;149:189–195. DOI: https://doi.org/10.1016/j.jphotobiol.2015.06.010

Anwar MA, Afzaa N, Ferheen S, Akhtar M, Ahmed AN, Kalhoro MA, et al. Nematicidal Potential of the Galinsoga parviflora. Biol Sci 2011;54(2):83–87.

Parzonko A, Kiss AK. Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA-radiation. Phytomedicine 2019;57:215–222. DOI: https://doi.org/10.1016/j.phymed.2018.12.022

Andlauer W, Fürst P. Nutraceuticals: a piece of history, present status and outlook. Food Res Int 2002;35(2–3):171–176. DOI: https://doi.org/10.1016/S0963-9969(01)00179-X

Moraes FP. ALIMENTOS FUNCIONAIS E NUTRACÊUTICOS: DEFINIÇÕES, LEGISLAÇÃO E BENEFÍCIOS À SAÚDE. Rev eletrônica farmácia 2006;3(2). DOI: https://doi.org/10.5216/ref.v3i2.2082

Van der Meij BS, Bauer JD, Isenring EA, Brown T, Davidson WL, van Bokhorst MAE, et al. The effects of supplementation of n-3 polyunsaturated fatty acids on clinical outcome parameters in patients with cancer: a systematic review. OA Epidemiol 2013;1(1):2.

Lorente-Cebrián S, Costa AG V, Navas-Carretero S, Zabala M, Martínez JA, Moreno-Aliaga MJ. Role of omega-3 fatty acids in obesity, metabolic syndrome, and cardiovascular diseases: a review of the evidence. J Physiol Biochem 2013;69(3):633–651. DOI: https://doi.org/10.1007/s13105-013-0265-4

Aguiar Neto W de S. Um breve levantamento bibliográfico sobre os ácidos graxos ômega-3 e suas características. 2018.

Souza PHM, Souza Neto MH, Maia GA. Componentes funcionais nos alimentos. Bol da SBCTA 2003;37(2):127–135.

Endo J, Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J Cardiol 2016;67(1):22–27. DOI: https://doi.org/10.1016/j.jjcc.2015.08.002

Fasakin CF, Udenigwe CC, Aluko RE. Antioxidant properties of chlorophyll-enriched and chlorophyll-depleted polyphenolic fractions from leaves of Vernonia amygdalina and Gongronema latifolium. Food Res Int 2011;44(8):2435–2441. DOI: https://doi.org/10.1016/j.foodres.2010.12.019

Neves AP, Vargas MD. Complexos de platina (II) na terapia do câncer. Rev Virtual Química 2011;3(3):196–209.

Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 2005;4(4):307. DOI: https://doi.org/10.1038/nrd1691

Amuthan A, Devi V, SHREEDHARA CS, RAO V, Lobo R. Cytoprotective Activity of Neichitti (Vernonia cinerea) in Human Embryonic Kidney (HEK293) Normal Cells and Human Cervix Epitheloid Carcinoma (HeLa) Cells against Cisplatin Induced Toxicity: A Comparative Study. J Clin Diagnostic Res 2019;13(2). DOI: https://doi.org/10.7860/JCDR/2019/40242.12624

Siew Y-Y, Yew H-C, Neo S-Y, Seow S-V, Lew S-M, Lim S-W, et al. Evaluation of anti-proliferative activity of medicinal plants used in Asian Traditional Medicine to treat cancer. J Ethnopharmacol 2019;235:75–87. DOI: https://doi.org/10.1016/j.jep.2018.12.040

Marzouk AM, Abd Elhalim OB. A new lanostane-type triterpene and sesquiterpene lactones from Vernonia leopoldii and their in vitro cytotoxicity. Nat Prod Res 2016;30(7):741–749. DOI: https://doi.org/10.1080/14786419.2015.1062004

Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 2010;15(15–16):668–678. DOI: https://doi.org/10.1016/j.drudis.2010.06.002

Downloads

Published

2020-10-26

How to Cite

Feleti, S. M. V., Aleluia, R. L., Gervásio, S. V., Dutra, J. C. V., R. P. Oliveira, J. ., Rita de Cássia R. Gonçalves, R. de, Jamal, C. M., Kuster, R. M., Brasileiro, B. G., & Batitucci, M. do C. P. (2020). PHYTOCHEMICAL SCREENING, ANTIOXIDANT, ANTI-CYTOTOXIC AND ANTICANCER EFFECTS OF GALINSOGA PARVIFLORA AND VERNONIA POLYANTHES (ASTERACEAE) EXTRACTS. International Journal of Research -GRANTHAALAYAH, 8(10), 84–98. https://doi.org/10.29121/granthaalayah.v8.i10.2020.1782