BENEFICIAL EFFECTS OF MAGNETIC FIELDS ON THE HUMAN HEART A REVIEW OF CURRENT ADVANCES AND PROPOSED MECHANISMS

Authors

  • Abraham A. Embi Bs 13442 SW 102 LANE, Miami, Florida, USA 33186, Citizen Scientist

DOI:

https://doi.org/10.29121/granthaalayah.v6.i11.2018.1127

Keywords:

Hair Biomagnetism, Hair Blood Coagulation, Effect Bio Magnetic Fields, Hair Inhibition Fibrin

Abstract [English]

The main purpose of this manuscript is to introduce the reader to the present “state of the art” in experimental Low Level Magnetic Fields nerve stimulation approaches to improve chaotic cardiac arrhythmias and muscle contractions. The area addressed in this paper is the transcutaneous application of Low Level Magnetic Fields to a branch of the vagus nerve. Cardiac Arrhythmias such as Atrial Fibrillation, as well as and muscle contractility were reversed by Low Level Transcutaneous Stimulation (LL-TS) of the Auricular Branch of the Vagus Nerve (ABVN). This treatment has been successfully reported in humans as well as in awaken and anesthetized animals such as rodents and dogs. The functional improvement has been attributed to a reversal of cardiac myocytes remodeling (reversal of fibrosis) resulting from experimentally provoking induced rapid heartbeats. The prolonged duration of a tachycardia state induces intracellular accumulation of glycogen leading into fibrosis, this in turn is hypothesized to impede the intercellular electrical communications of the specialized cardiac cells. It also reduces the functional ability of the main pumping chamber (Left Ventricle).

Downloads

Download data is not yet available.

References

Embi, A.A., Scherlag, B. J., & Ritchey, J. W. (2014). Glycogen and the propensity for atrial fibrillation: intrinsic anatomic differences in glycogen in the left and right atria in the goat heart. North American journal of medical sciences, 6(10), 510-5. PMC4215488 DOI: https://doi.org/10.4103/1947-2714.143282

Ling Zhang, Bing Huang, Benjamin J Scherlag, Jerry W Ritchey, Abraham A Embi, Jialu Hu, Yuemei Hou, Sunny S Po (2015) Structural changes in the progression of atrial fibrillation: potential role of glycogen and fibrosis as perpetuating factors Int J Clin Exp Pathol. 2015; 8(2): 1712–1718. PMC4396299

3) Yu L, Scherlag BJ, Li S, Fan Y, Dyer J, Male S, Varma V, Sha Y, Stavrakis S, Po SS. (2013) Low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve: a noninvasive approach to treat the initial phase of atrial fibrillation. ;10(3):428-35. PMID: 23183191 DOI: https://doi.org/10.1016/j.hrthm.2012.11.019

4) Wang Z, Yu L, Wang S, Huang B, Liao K, Saren G, Tan T, Jiang H. (2014) Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ Heart Fail. 2014 Nov;7(6):1014-21. PMID:25332149 DOI: https://doi.org/10.1161/CIRCHEARTFAILURE.114.001564

Wang Z, Yu L, Huang B, Wang S, Liao K, Saren G, Zhou X, Jiang H. (2015) Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor β1. J Cardiovasc Pharmacol. 2015 Apr;65(4):342-8. doi: 10.1097/FJC.0000000000000201. PMID:25502306 DOI: https://doi.org/10.1097/FJC.0000000000000201

Sánchez-Quintana, D., López-Mínguez, J. R., Pizarro, G., Murillo, M., & Cabrera, J. A. (2012). Triggers and anatomical substrates in the genesis and perpetuation of atrial fibrillation. Current cardiology reviews, 8(4), 310-26. PMC3492815 DOI: https://doi.org/10.2174/157340312803760721

Abdul-Aziz, Ahmad A. et al. (2018) Lifestyle Therapy for the Management of Atrial Fibrillation American Journal of Cardiology, Volume 121, Issue 9 , 1112 – 1117 DOI: https://doi.org/10.1016/j.amjcard.2018.01.023

Kirchhof, P., & Calkins, H. (2016). Catheter ablation in patients with persistent atrial fibrillation. European heart journal, 38(1), 20-26. DOI: https://doi.org/10.1093/eurheartj/ehw260

Embi, A. A., & Scherlag, B. J. (2014). An endocrine hypothesis for the genesis of atrial fibrillation: the hypothalamic-pituitary-adrenal axis response to stress and glycogen accumulation in atrial tissues. North American journal of medical sciences, 6(11), 586-90. PMC4264295. DOI: https://doi.org/10.4103/1947-2714.145478

Gao, X.Y., Li, Y.H., Liu, K., Rong, P.J., Ben, H., Li, L., Zhu, B., Zhang, S.P. 2011. Acupuncture-like stimulation at auricular point Heart evokes cardiovascular inhibition via activating the cardiac-related neurons in the nucleus tractus solitarius. Brain Research 1397, 19-27.

Alberto Lomuscio M.D. Sebastiano Belletti M.D. Pier Maria Battezzati M.D. Federico Lombardi M.D., F.E.S.C. (2011) Efficacy of Acupuncture in Preventing Atrial Fibrillation Recurrences After Electrical Cardioversion. J Cardiovasc Electrophysiol, Vol. 22, pp. 241‐247. DOI: https://doi.org/10.1111/j.1540-8167.2010.01878.x

Jonkman FA, Jonkman-Buidin ML. (2013) Integrated approach to treatment-resistant atrial fibrillation: additional value of acupuncture. Acupunct Med. 2013 Sep;31(3):327-30. PMID:23884291 DOI: https://doi.org/10.1136/acupmed-2013-010380

Dilber D, Čerkez-Habek J, Barić H, Gradišer M. (2015) Atrial fibrillation cardioversion following acupuncture. Saudi Med J. 2015 Nov;36(11):1351-3. doi: 10.15537/smj.2015.11.12891. PMID:26593171 DOI: https://doi.org/10.15537/smj.2015.11.12891

Cui P, Ma T, Tamadon A, Han S, Li B, Chen Z, An X, Shao LR, Wang Y Feng Y. (2018) Hypothalamic DNA methylation in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electro-acupuncture. Exp Physiol. 2018 Sep 11. doi: 10.1113/EP087163. [Epub ahead of print] PMID:30204276 DOI: https://doi.org/10.1113/EP087163

Lin H, Yin X, Lunetta KL, Dupuis J, McManus DD, Lubitz SA, et al. (2014) Whole Blood Gene Expression and Atrial Fibrillation: The Framingham Heart Study. PLoS ONE 9(5): e96794. DOI: https://doi.org/10.1371/journal.pone.0096794

A.V. Bychkova, O.N. Sorokina, A.L. Kovarski, A.B. Shapiro, V.B. Leonova, M.A. Rozenfel’d, (2010) Interaction of fibrinogen with magnetite nanoparticles. Biophysics. Vol. 55, No. 4, pp. 544-549. DOI: https://doi.org/10.1134/S0006350910040044

Simone Kern, Terrence R. Oakes, Charles K. Stone, Emelia M. McAuliff, Clemens Kirschbaum, and Richard J. Davidson. (2008). Glucose metabolic changes in the prefrontal cortex are associated with HPA axis response to a psychosocial stressor. Psychoneuroendocrinology. 2008 May; 33(4): 517–529.

Maertens de Noordhout A, Rothwell JC, Day BL, Dressler D, Nakashima K, Thompson PD, Marsden CD. (1992) Effect of digital nerve stimuli on responses to electrical or magnetic stimulation of the human brain. J Physiol. 1992 Feb; 447:535-48.

Embi AA. (2018) HAIR AND BLOOD ENDOGENOUS LOW LEVEL BIOMAGNETIC FIELDS CROSS-TALK EFFECTS ON FIBRIN INHIBITION AND ROULEAU FORMATION, IJGR (in print).

Goraca A, Michalska M. (2005). [The effect of low magnetic field on select parameters of blood coagulation]. Pol Merkur Lekarski. (110):148-51.

Dhahir T. Ahmad (2011) Effects of Low Frequency Pulsed Magnetic Field on Blood Clotting Time in Male Rabbits. Diyala Journal of Medicine. Vol. 1, Issue 2: pp. 56-63.

Downloads

Published

2018-11-30

How to Cite

Embi Bs, A. A. (2018). BENEFICIAL EFFECTS OF MAGNETIC FIELDS ON THE HUMAN HEART A REVIEW OF CURRENT ADVANCES AND PROPOSED MECHANISMS. International Journal of Research -GRANTHAALAYAH, 6(11), 266–271. https://doi.org/10.29121/granthaalayah.v6.i11.2018.1127