EFFECT OF TEMPERATURE VARIATION ON THE PRODUCTION OF BIODIESEL USING NEEM OIL

Authors

  • Mujidatu Ahmed Lira Department of Chemistry, Adamawa State University, Mubi-Nigeria
  • Musa Idris Atadash Department of Chemistry, Adamawa State University, Mubi-Nigeria

DOI:

https://doi.org/10.29121/granthaalayah.v6.i9.2018.1267

Keywords:

Biodiesel, Transesterification, Neem Seed Oil, Ethanol, Sodium Methoxide, Washing

Abstract [English]

Biodiesel was produced from neem seed oil via a two-step process of esterification and transesterififcation reactions. The transesterification was carried out using CH3ONa as catalyst with ethanol as the alcohol. The reaction temperature was varied between 30, 40, 50, 60, and 700C, while all other process parameters were kept constant. From the results obtained, a significant change in biodiesel yield (73-79%) from 30-50oC temperatures was observed. At a temperature of 60oC, a good yield of 94% was obtained which was observed at a temperature below the boiling point of the alcohol used. At 70oC biodiesel yield of 67% was obtained; this indicates a drop in biodiesel yield. Further flash point of 149.60C indicated that the biodiesel produced is within the specification of ASTM D6751. Also, the high value of flash point indicated that the fuel is safe for handling as it exceeds the minimun ASTM requirement (130min). It is worthy to mention that other properties such as viscosity, pour point and cloud point etc investigated also presented good values which were within ASTM D6751. The formation of biodiesel was confirmed by FT-IR analysis. The conversion of the ester functional group into methyl esters in biodiesel verified the success of the reaction.

Downloads

Download data is not yet available.

References

Amani, H., Asif, M., & Hameed, B. H. (2016). Transesterification of waste cooking palm oil and palm oil to fatty acid methyl ester using cesium-modified silica catalyst. Journal of the Taiwan Institute of Chemical Engineers, 58, 226-234. doi: http://dx.doi.org/10.1016/j.jtice.2015.07.009. DOI: https://doi.org/10.1016/j.jtice.2015.07.009

Atabani, A.E., Silitonga, A.S., Ong, H.C, Mahlia, T.M.L., Masjuki, H.H.; Badruddina, I.A; & Fayaz, H., (2013). Non-edible vegetable oils. critical evaluation of oil extraction, Fatty acid composition, biodeisel production, characteristics, engine performance and emissions, production renewable sustainable energy Rev. 18, 211 - 245.

Atadashi, I. M., Aroua, M. K., Abdul Aziz, A. R., & Sulaiman, N. M. N. (2011). Refining technologies for the purification of crude biodiesel. Applied Energy, 88(12), 4239-4251. doi: 10.1016/j.apenergy.2011.05.029 DOI: https://doi.org/10.1016/j.apenergy.2011.05.029

Atadashi, I. M., Aroua, M. K., & Aziz, A. A. (2010). High quality biodiesel and its diesel engine application: A review. Renewable and Sustainable Energy Reviews, 14(7), 1999-2008. doi: 10.1016/j.rser.2010.03.020 DOI: https://doi.org/10.1016/j.rser.2010.03.020

Baroutian, S., Aroua, M. K., Raman, A. A. A., & Sulaiman, N. M. N. (2011). A packed bed membrane reactor for production of biodiesel using activated carbon supported catalyst. Bioresource Technology, 102(2), 1095-1102. doi: 10.1016/j.biortech.2010.08.076 DOI: https://doi.org/10.1016/j.biortech.2010.08.076

Behzadi, S., & Farid, M. M. (2009). Production of biodiesel using a continuous gas–liquid reactor. Bioresource Technology, 100(2), 683-689. doi: 10.1016/j.biortech.2008.06.037 DOI: https://doi.org/10.1016/j.biortech.2008.06.037

Berrios, M., & Skelton, R. L. (2008). Comparison of purification methods for biodiesel. Chemical Engineering Journal, 144(3), 459-465. doi: 10.1016/j.cej.2008.07.019 DOI: https://doi.org/10.1016/j.cej.2008.07.019

Cao, P., Andre´, Y., Dube, M. A., Tremblay, A. Y., & Katie, M. (2007). Effect of membrane pore size on the performance of a membrane reactor for biodiesel production.. Ind. Eng. Chem. Res., 46 52-58. DOI: https://doi.org/10.1021/ie060555o

Casas, A., Fernández, C. M., Ramos, M. J., Pérez, Á., & Rodríguez, J. F. (2010). Optimization of the reaction parameters for fast pseudo single-phase transesterification of sunflower oil. Fuel, 89(3), 650-658. doi: 10.1016/j.fuel.2009.08.004 DOI: https://doi.org/10.1016/j.fuel.2009.08.004

de Jesus, A., M´arcia, M., & Maria, G. (2008). The use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry. Talanta 74 1378–1384. DOI: https://doi.org/10.1016/j.talanta.2007.09.010

Demirbas, A. (2003). Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: a survey. Energy Conversion and Management 44, 2093–2109. DOI: https://doi.org/10.1016/S0196-8904(02)00234-0

Demirbas, A. (2009). Progress and recent trends in biodiesel fuels.. Energ Conv Manag 50 14–34. DOI: https://doi.org/10.1016/j.enconman.2008.09.001

Dong, T., Wang, J., Miao, C., Zheng, Y., & Chen, S. (2013). Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresource Technology, 136(0), 8-15. doi: http://dx.doi.org/10.1016/j.biortech.2013.02.105. DOI: https://doi.org/10.1016/j.biortech.2013.02.105

Eevera, T; Rajendran, K. & Saradha, S. (2009). Biodeseal production process optimization and characterization to assess the suitability of the product for varied environemntal condition. Renewable energy, Vol. 34(3), Pp. 762 - 765. DOI: https://doi.org/10.1016/j.renene.2008.04.006

Guo, X., Wang, S., Guo, Z., Liu, Q., Luo, Z., & Cen, K. (2010). Pyrolysis characteristics of bio-oil fractions separated by molecular distillation. Applied Energy, 87(9), 2892-2898. doi: 10.1016/j.apenergy.2009.10.004 DOI: https://doi.org/10.1016/j.apenergy.2009.10.004

Hamze, H., Akia, M., & Yazdani, F. (2015). Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Safety and Environmental Protection, 94, 1-10. doi: http://dx.doi.org/10.1016/j.psep.2014.12.005 DOI: https://doi.org/10.1016/j.psep.2014.12.005

Montefrio, M., Xinwen, T., & Obbard, J. (2010). Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production. Applied Energy, 87, 3155–3161. DOI: https://doi.org/10.1016/j.apenergy.2010.04.011

Olutoye, M. A., Wong, S. W., Chin, L. H., Amani, H., Asif, M., & Hameed, B. H. (2016). Synthesis of fatty acid methyl esters via the transesterification of waste cooking oil by methanol with a barium-modified montmorillonite K10 catalyst. Renewable Energy, 86, DOI: https://doi.org/10.1016/j.renene.2015.08.016

Sharma, Y. C., Singh, B., & Upadhyay, S. N. (2008). Advancements in development and characterization of biodiesel: A review. Fuel, 87(12), 2355-2373. doi: 10.1016/j.fuel.2008.01.014 DOI: https://doi.org/10.1016/j.fuel.2008.01.014

Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28(5), 628-634. DOI: https://doi.org/10.1016/j.biotechadv.2010.05.012

21.Vicente, G., Martínez, M., & Aracil, J. (2007). Optimisation of integrated biodiesel production. Part I. A study of the biodiesel purity and yield. Bioresource Technology, 98(9), 1724-1733. doi: 10.1016/j.biortech.2006.07.024 DOI: https://doi.org/10.1016/j.biortech.2006.07.024

Wang, Y., Ou, P. L. S., & Zhang, Z. (2007). Preparation of biodiesel from waste cooking oil Svia two-step catalyzed process. Energy Conversion and Management, 48(1), 184-188. doi: 10.1016/j.enconman.2006.04.016. DOI: https://doi.org/10.1016/j.enconman.2006.04.016

Downloads

Published

2018-09-30

How to Cite

Ahmed Lira, M., & Idris Atadash, M. (2018). EFFECT OF TEMPERATURE VARIATION ON THE PRODUCTION OF BIODIESEL USING NEEM OIL. International Journal of Research -GRANTHAALAYAH, 6(9), 442–450. https://doi.org/10.29121/granthaalayah.v6.i9.2018.1267