TRUE POWER LOSS REDUCTION BY HARMONY SEARCH ALGORITHM

Authors

  • Dr. K. Lenin Professor, Department of EEE, Prasad V.Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada, Andhra Pradesh -520007, India

DOI:

https://doi.org/10.29121/granthaalayah.v6.i9.2018.1220

Keywords:

Optimal Reactive Power, Transmission Loss, Harmony Search, Optimization

Abstract [English]

This paper presents Harmony Search algorithm (HS) for solving the reactive power problem.  Real power loss minimization is the major objective & also voltage profiles are should be kept within the limits.  This paper introduces a new search model the harmony search (HS) algorithm is a relatively new population-based metaheuristic optimization algorithm. It emulates the music improvisation progression where musicians improvise their instruments’ pitch by searching for a perfect state of harmony. In order to evaluate the efficiency of the proposed algorithm, it has been tested on practical 191 test system & real power loss has been considerably reduced.

Downloads

Download data is not yet available.

References

O. Alsac, B. Scott, “Optimal load flow with steady state security”, IEEE Transaction. PAS -1973, pp. 745-751. DOI: https://doi.org/10.1109/TPAS.1974.293972

Lee K Y, Paru Y M, Oritz J L –A united approach to optimal real and reactive power dispatch, IEEE Transactions on power Apparatus and systems 1985: PAS-104: 1147-1153 DOI: https://doi.org/10.1109/TPAS.1985.323466

A. Monticelli, M. V.F Pereira, and S. Granville , “Security constrained optimal power flow with post contingency corrective rescheduling” , IEEE Transactions on Power Systems :PWRS-2, No. 1, pp.175-182.,1987. DOI: https://doi.org/10.1109/TPWRS.1987.4335095

Deeb N, Shahidehpur S.M, Linear reactive power optimization in a large power network using the decomposition approach. IEEE Transactions on power system 1990: 5(2): 428-435 DOI: https://doi.org/10.1109/59.54549

E. Hobson,’ Network consrained reactive power control using linear programming, ‘IEEE Transactions on power systems PAS -99 (4), pp 868=877, 1980 DOI: https://doi.org/10.1109/TPAS.1980.319715

K.Y Lee, Y.M Park, and J.L Oritz, “Fuel –cost optimization for both real and reactive power dispatches”, IEE Proc; 131C, (3), pp.85-93. DOI: https://doi.org/10.1049/ip-c.1984.0012

M.K. Mangoli, and K.Y. Lee, “Optimal real and reactive power control using linear programming”, Electr. Power Syst. Res, Vol.26, pp.1-10,1993. DOI: https://doi.org/10.1016/0378-7796(93)90063-K

C.A. Canizares, A.C.Z.de Souza and V.H. Quintana, “Comparison of performance indices for detection of proximity to voltage collapse,’’ vol. 11. no.3, pp.1441-1450, Aug 1996.

K. Anburaja, “Optimal power flow using refined genetic algorithm”, Electr. Power Compon. Syst, Vol. 30, 1055-1063,2002. DOI: https://doi.org/10.1080/15325000290085343

D. Devaraj, and B. Yeganarayana, “Genetic algorithm based optimal power flow for security enhancement”, IEE proc-Generation. Transmission and. Distribution; 152, 6 November 2005. DOI: https://doi.org/10.1049/ip-gtd:20045234

A. Berizzi, C. Bovo, M. Merlo, and M. Delfanti, “A ga approach to compare orpf objective functions including secondary voltage regulation,” Electric Power Systems Research, vol. 84, no. 1, pp. 187 – 194, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.11.014

C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su, and G. W. Chang, “Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement,” International Journal of Electrical Power and Energy Systems, vol. 37, no. 1, pp. 50 – 57, 2012. DOI: https://doi.org/10.1016/j.ijepes.2011.12.003

P. Roy, S. Ghoshal, and S. Thakur, “Optimal var control for improvements in voltage profiles and for real power loss minimization using biogeography-based optimization,” International Journal of Electrical Power and Energy Systems, vol. 43, no. 1, pp. 830 – 838, 2012. DOI: https://doi.org/10.1016/j.ijepes.2012.05.032

B. Venkatesh, G. Sadasivam, and M. Khan, “A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy lp technique,” IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 844 – 851, may 2000. DOI: https://doi.org/10.1109/59.867183

W. Yan, S. Lu, and D. Yu, “A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique,” IEEE Transactions on Power Systems, vol. 19, no. 2, pp. 913 – 918, may 2004. DOI: https://doi.org/10.1109/TPWRS.2004.826716

W. Yan, F. Liu, C. Chung, and K. Wong, “A hybrid genetic algorithminterior point method for optimal reactive power flow,” IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1163 –1169, aug. 2006.

J. Yu, W. Yan, W. Li, C. Chung, and K. Wong, “An unfixed piecewiseoptimal reactive power-flow model and its algorithm for ac-dc systems,” IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 170 –176, feb. 2008. DOI: https://doi.org/10.1109/TPWRS.2007.907387

F. Capitanescu, “Assessing reactive power reserves with respect to operating constraints and voltage stability,” IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2224–2234, nov. 2011.

Z. Hu, X. Wang, and G. Taylor, “Stochastic optimal reactive power dispatch: Formulation and solution method,” International Journal of Electrical Power and Energy Systems, vol. 32, no. 6, pp. 615 – 621, 2010. DOI: https://doi.org/10.1016/j.ijepes.2009.11.018

Kargarian, M. Raoofat, and M. Mohammadi, “Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads,” Electric Power Systems Research, vol. 82, no. 1, pp. 68 – 80, 2012. DOI: https://doi.org/10.1016/j.epsr.2011.08.019

Gao XZ, Wang X, Ovaska SJ, “Modified harmony search methods for uni-modal and multi-modal optimization”, In: Proceedings of the 2008 8th international conference on hybrid intelligent systems. Pp 65–72. (2008) DOI: https://doi.org/10.1109/HIS.2008.20

Gao XZ,Wang X, Ovaska SJ, “Uni-modal and multi-modal optimization using modified harmony search methods” , Int J Innov Comput Inf Control. (2009)

Geem Z, “Improved harmony search from ensemble of music players”, In: Gabrys B, Howlett RJ, Jain L (eds) Knowledge-based intelligent information and engineering systems. Springer, Heidelberg, pp 86–93. (2006) DOI: https://doi.org/10.1007/11892960_11

Geem Z, “Optimal scheduling of multiple dam system using harmony search algorithm”, In: Computational and ambient intelligence. Springer, Berlin, pp 316–323. (2007) DOI: https://doi.org/10.1007/978-3-540-73007-1_39

Downloads

Published

2018-09-30

How to Cite

Lenin, K. (2018). TRUE POWER LOSS REDUCTION BY HARMONY SEARCH ALGORITHM. International Journal of Research -GRANTHAALAYAH, 6(9), 196–205. https://doi.org/10.29121/granthaalayah.v6.i9.2018.1220

Most read articles by the same author(s)

1 2 3 4 5 6 7 > >>