INVESTIGATE THE BUSHING SHAPE IN MOULD SUPPORTED THERMAL FRICTION DRILLING

Authors

  • Zülküf Demir Department of Mechanical Engineering, Batman University Bati Raman Campus, Batman 72100, Turkey
  • Oktay Adiyaman Department of Manufacturing and Mechanical Engineering, Batman University Bati Raman Campus, Batman 72100, Turkey

DOI:

https://doi.org/10.29121/granthaalayah.v6.i8.2018.1455

Keywords:

Friction Drilling, Bushing Shape, Threading, Connecting Length, Friction Drilling Moulds

Abstract [English]

Although bushing height and wall thickness are crucial issues, cracks and petal formation on bushings affect these outcomes adversely in thermal friction drilling operations. Therefore, in this paper, bushing shapes were investigated both in traditional and mould supported thermal friction drilling of A7075-T651 aluminum alloy, 4 mm in thickness, at 2000 rpm spindle speed and 25 mm/min feed rate. The proportion of the volume cavities (VBC) of the moulds to the volume of the total evacuated material (VE) selected between 16 % and 32 %. Moreover, the gap sizes between the tool and tool proceeding cavity (CDT) were selected at 0.2 mm, 0.3 mm, and 0.4 mm. In conclusion cracks and petal formation were substantially eliminated, bushing height and wall thickness values were able to select, depending on requirements, also homogenous bushing wall thickness for threading, in moulds supporting thermal friction drilling operations.

Downloads

Download data is not yet available.

References

S. A. El-Bahloul, H. E. El-Shourbagy, A. M. El-Bahloul, T. T. El-Midany, Experimental and thermo-mechanical modeling optimization of thermal friction drilling for AISI 304 Stainless steel. CIRP J. Manuf. Sci. Technol., 20 (2018), 84-92. https://doi.org/10.1016/j.cirpj.2017.10.001 DOI: https://doi.org/10.1016/j.cirpj.2017.10.001

S. F. Miller, R. Li, H. Wang, A. J. Shih, Experimental and numerical analysis of the friction drilling process. J. Manuf. Sci. Eng., 128 (2006), 802-810. DOI: 10.1115/1.2193554 DOI: https://doi.org/10.1115/1.2193554

S. F. Miller, J. Tao, A. J. Shih, Friction drilling of cast metals. Int. J. Mach. Tools Manuf., 46 (2006), 1526-1535. doi:10.1016/j.ijmachtools.2005.09.003 DOI: https://doi.org/10.1016/j.ijmachtools.2005.09.003

Z. Demir, C. Özek, Investigate the effect of pre-drilling in friction drilling of A7075-T651. Mater. Manuf. Proc., 29 (2014), 593-599. http://dx.doi.org/10.1080/10426914.2014.892986 DOI: https://doi.org/10.1080/10426914.2014.892986

L. S. Nama, N. S. Namer, I. T. Abdullah, Effect of Pre-hole diameter on bushing dimensions for friction drilling process of A6063-T6 aluminium alloy. J. Al Rafidain Uni. College. 9 (2016), 373 – 387.

W. L. Ku, C. L. Hung, S. M. Lee, H. M. Chow, Optimization in thermal friction drilling for SUS 304 stainless steel. Int. J. Adv. Manuf. Technol., 53 (2011), 935-944.

S. F. Miller, P. T. Blau, A. J. Shih, Microstructural alterations associated with friction drilling of steel, aluminum, and titanium. J. Mater. Eng. Performance, 14 (5) (2007), 647-653. doi:10.1361/105994905X64558 DOI: https://doi.org/10.1361/105994905X64558

M. Boopathi, S. Shankar, S. Manikandakumar, R. Ramesh, Experimental investigation of friction drilling of brass, aluminium and stainless steel. Procedia Eng., 64 (2013), 1219 – 1226. doi:10.1016/j.proeng.2013.09.201 DOI: https://doi.org/10.1016/j.proeng.2013.09.201

B. P. Raju, M. K. Swamy, Finite element simulation of a friction drilling process using deform 3D. Int. J. Eng. Research Application (IJERA), 2 (2012), 716 – 721.

Downloads

Published

2018-08-31

How to Cite

Demir, Z., & Adiyaman, O. (2018). INVESTIGATE THE BUSHING SHAPE IN MOULD SUPPORTED THERMAL FRICTION DRILLING. International Journal of Research -GRANTHAALAYAH, 6(8), 226–237. https://doi.org/10.29121/granthaalayah.v6.i8.2018.1455