REMOVAL OF HG(II) METAL IONS USING KAOLIN ADSORBENTS MODIFIED WITH ANIONIC SURFACTANT AND EFFICIENT ULTRASONIC ASSISTED

Authors

  • Alfian Putra Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Zaimahwati Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia
  • Rizal Syahyadi Department of Civil Engineering, Politeknik Negeri Lhokseumawe, Banda Aceh-Medan Street, 280,3, Buketrata, Mesjid Punteut, Blang Mangat, Lhokseumawe, Aceh 24301, Indonesia
  • Teuku Rihaya Department of Chemical Engineering, Politeknik Negeri Lhokseumawe, Lhokseumawe, Aceh 24301, Indonesia https://orcid.org/0000-0001-5943-8574
  • Nurhanifa Aidy Departement of Renewable Energy, Universitas Malikussaleh, Tengku Nie, Cot Rd, Reuleut Tim., Muara Batu, Kabupaten Aceh Utara, 24355, Aceh, Indonesia https://orcid.org/0000-0002-2958-4893

DOI:

https://doi.org/10.29121/granthaalayah.v9.i11.2021.4379

Keywords:

Kaolinite, Adsorbent, Removal of Metal, Ultrasonic Assited, Surfactant

Abstract [English]

This study reported the reduction of metal Hg(II) from water using natural kaolinite (NK) based adsorbents compared with modified kaolinite adsorbents with Hexadecyl trimethyl ammonium bromide anionic surfactants using ultrasonic technology (SMK). These adsorbent samples were characterized using several different techniques such as FTIR, X-RD and AAS analysis. The adsorption capacity is influenced by variables such as the contact time and adsorben dosage. The results of the analysis reported that the maximum waste reduction efficiency occurs in modified kaolin (SMK), where adsorption occurs faster than natural kaolin (NK). The maximum persentation is 94.57% for metal removal efficiency using modified kaolin at the contact time of 45 minutes and the dose of adsobene 1.4 g, while kaolin without modification is 73.83% of efficiency at the contact time of 60 minutes the adsobent dose was 1.4 g. The use of the adsorption method with the help of ultrasonic technology is proven to be more efficient in accelerating the removal of Hg2+ ions by increasing the surface dispersion of the adsorbent with metal ions in water. The adsorption kinetics model that is suitable for calculating the adsorption capacity of the adsorbent in the removal of Hg2+ ions using unmodified kaolin is pseudo-second-order models.

Downloads

Download data is not yet available.

References

A. Gil, L. Santamaría, S.A. Korili, M.A. Vicente, L.V. Barbosa, S.D. de Souza, L. Marçal, E.H. de Faria, K.J. Ciuffi, (2021) A review of organic-inorganic hybrid clay based adsorbents for contaminants removal: Synthesis, perspectives and applications. Journal of Environmental Chemical Engineering. 9, 105808. Retrieved from https://doi.org/10.1016/j.jece.2021.105808 DOI: https://doi.org/10.1016/j.jece.2021.105808

A. Vargas, A. Cazetta, M. Kumita, T. Silva, V. Almeida. (2011) Adsorption of methylene blue on activated carbon produced from flamboyant pods {(D}elonix regia): study of adsorption isotherms and kinetc models. Chem. Eng. J. 168, 722-730. Retrieved from https://doi.org/10.1016/j.cej.2011.01.067 DOI: https://doi.org/10.1016/j.cej.2011.01.067

Ana Vera de Toledo Piza Figueiredo Ferreira, Lorrana Vietro Barbosa, Suelen Delfino de Souza, Katia Jorge Ciuffi, Miguel Angel Vicente, Raquel Trujillano, Sophia A. Korili, Antonio Gil, Emerson Henrique de Faria. (2021) Titania-triethanolamine-kaolinite nanocomposites as adsorbents and photocatalysts of herbicides. Journal of Photochemistry and Photobiology A: Chemistry. 419, 113483. Retrieved from https://doi.org/10.1016/j.jphotochem.2021.113483 DOI: https://doi.org/10.1016/j.jphotochem.2021.113483

Anais Adauto, María R. Sun-Kou. (2021) Comparative study of anion removal using adsorbents prepared from a homoionic clay. Environmental Nanotechnology, Monitoring & Management. 15, 100476. Retrieved from https://doi.org/10.1016/j.enmm.2021.100476 DOI: https://doi.org/10.1016/j.enmm.2021.100476

Anirudhan, T. S., & Ramachandran, M. (2015) Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 95, 215-225. Retrieved from https://doi.org/10.1016/j.psep.2015.03.003 DOI: https://doi.org/10.1016/j.psep.2015.03.003

Ariffin, N., Abdullah, M.M.A.B., Mohd Arif Zainol, M.R.R., Murshed, M.F., Zain, H., Faris, M.A., Bayuaji, R. (2017) Review on adsorption of heavy metal in wastewater by using geopolymer. MATEC Web Conf., 97, 01023. Retrieved from https://doi.org/10.1051/matecconf/20179701023 DOI: https://doi.org/10.1051/matecconf/20179701023

Awale h, M.O., Soubaneh , Y.D, (2014) Waste water treatment in chemical industries: the concept and current technologies. Hydrol. Curr. Res., 5, 164 - 175. Retrieved from https://d1wqtxts1xzle7.cloudfront.net/63755884/Waste_Water_Treatment_in_Chemical_Indust20200627-112604-o7bmhs-with-cover-page-v2.pdf?Expires=1637758347&Signature=eyy5RpXbmV5rtVtops9yGXwLNP1U~MrmsVizx~nXwI0DfjW1~fnXxK92pIm1t4HUAqagATII0yXm5M3uzhq7Fw8d7nBA0mXa2A8X7EkbbO~MOW9-OfAmDELOTvF34t0acYHjSQ8nrBAOCMEqa5HPj-X93--5F0Nf49ZSsuDiLwaPIGN4kKb9LTO08kwSlW5z17e6thF0jtTrtZXWVP3zTIF~IYBkv-EJlkNjaPTS7FPwRk4yYgBdS4yIUloAAx5qinf5NDcP~5JLRh48PY12bbWrb~p370HZLm0ZlxdU7SkSRMCsiOBNnuZHTsyOgCNnaDigXU4JPmAs5Cwkit~91g__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Bamidele I. Olu-Owolabi, Paul N. (2021) Diagboya, Fanyana M. Mtunzi, Rolf-Alexander Düring. Utilizing eco-friendly kaolinite-biochar composite adsorbent for removal of ivermectin in aqueous media. Journal of Environmental Management, 279, 111619. Retrieved from https://doi.org/10.1016/j.jenvman.2020.111619 DOI: https://doi.org/10.1016/j.jenvman.2020.111619

Coelho, G.F., Goncalves Jr., A.C., Tarley, C.R.T., Casarin, J., Nacke, H., Francziskowski, M.A., (2014) Removal of metal ions Cd (II), Pb (II), and Cr (III) from water by the cashew nut shell Anacardium occidentale. Ecol. Eng. 73, 514 -525. Retrieved from https://doi.org/10.1016/j.ecoleng.2014.09.103 DOI: https://doi.org/10.1016/j.ecoleng.2014.09.103

Diana Guaya, Rocío Jiménez, Janeth Sarango, César Valderrama, José Luis Cortina. (2021) Iron-doped natural clays: Low-cost inorganic adsorbents for phosphate recovering from simulated urban treated wastewater. Journal of Water Process Engineering, 43, 102274. Retrieved from https://doi.org/10.1016/j.jwpe.2021.102274 DOI: https://doi.org/10.1016/j.jwpe.2021.102274

Emam, A. A, L.F.M. Ismail, M.A. AbdelKhalek, AzzaRehan. (2017) Adsorption Study of Some Heavy Metal Ions on Modified Kaolinite Clay. International Journal Of Advancement In Engineering Technology, 3, 152-163. https://d1wqtxts1xzle7.cloudfront.net/47881660/IJ16M0784-with-cover-page-v2.pdf?Expires=1637758760&Signature=QaUJ76GIzSTEcUvRht1zFWtiQZweA75ABS6~YRG-8rBpndNcwv-2h8TBeyzXUdpQQO5MbiqbOO-MzB~M7oqdS9TQ3siTSAmoSKc4ic8sW~cmZOfLoZ6T9LQBFmFmUYBkYRJhYcpFQig5J6omBZLW42upGffx5oUnmazAfHdKcTyGYQ4XaWEp9YHf-q9CpViuTdCvy1QD7goNZC9J2Go4ebIm8~1zEn~2NtkvFOsI0G0yR7kwrkIUE9ryiGK8UR1~iX8SW3YcsLx~7tuRRXVoljc0wfU-WS3~I94yhhiM9p1PvY0l3TD5ruceBnoFxmfO9z6Nqc~yUr9WFmD3NXsPJg__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA

Fainerman, V. B., Aksenenko, E. V., Kovalchuk, V. I., Mucic, N., Javadi, A., Liggieri, L., Schneck, E. (2020) New view of the adsorption of surfactants at water/alkane interfaces - Competitive and cooperative effects of surfactant and alkane molecules. Advances in Colloid and Interface Science. 279, 102143. Retrieved from https://doi.org/10.1016/j.cis.2020.102143 DOI: https://doi.org/10.1016/j.cis.2020.102143

G. Zhou, J. Luo, C. Liu, L. Chu, J. (2018) Crittenden. Efficient heavy metal removal from industrial melting effluent using fixed-bed process based on porous hydrogel adsorbents. Water Res. 131, 246-254. Retrieved from https://doi.org/10.1016/j.watres.2017.12.067 DOI: https://doi.org/10.1016/j.watres.2017.12.067

Gupta, V.K., Tyagi, I., Agarwal, S., Moradi, O., Sadegh, H., Shahryari-Ghoshekandi, R.,Makhlouf, A.S.H., Goodarzi, M., Garshasbi, A. (2016) Study on the removal of heavy metal ions from industry waste by carbon nanotubes: effect of the surface modifi cation - a review. Critic. Rev. Environ. Sci. Technol. 46, 93- 118. Retrieved from https://doi.org/10.1080/10643389.2015.1061874 DOI: https://doi.org/10.1080/10643389.2015.1061874

H. Haroon, T. Ashfaq, S.M.H. Gardazi, T.A. Sherazi, M. Ali, N. Rashid, M. Bilal. (2016) Equilibrium kinetic and thermodynamic studies of Cr (VI) adsorption onto a novel adsorbent of Eucalyptus camaldulensis waste: batch and column reactors. Korean J. Chem. Eng. 33, 2898-2907. Retrieved from https://doi.org/10.1007/s11814-016-0160-0 DOI: https://doi.org/10.1007/s11814-016-0160-0

Huan Zhang, Qingdong He, Wenting Zhao, Fang Guo, Lei Han, Wenbo Wang. (2021) Superior dyes removal by a recyclable magnetic silicate@Fe3O4 adsorbent synthesized from abundant natural mixed clay. Chemical Engineering Research and Design. 175, 272-282. Retrieved from https://doi.org/10.1016/j.cherd.2021.09.017 DOI: https://doi.org/10.1016/j.cherd.2021.09.017

Jeeva, M., Lakkaboyana, S. K., & WY, W. Z. (2019) The adsorption of Direct Brown 1 dye using kaolinite and surfactant modified kaolinite. Bulletin of the Geological Society of Malaysia,, 67, 35-45. Retrieved from https://doi.org/10.7186/bgsm67201905 DOI: https://doi.org/10.7186/bgsm67201905

L. Mouni, L. Belkhiri, J. C. Bollinger, A. Bouzaza, A. Assadi, A. Tirri, H. Remini. (2018) Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies. Appl. Clay Sci. 153, 38-45. Retrieved from https://doi.org/10.1016/j.clay.2017.11.034 DOI: https://doi.org/10.1016/j.clay.2017.11.034

Leal, P. V., Magriotis, Z. M., Sales, P. F., Papini, R. M., Viana, P. R. (2017) Effect of the acid treatment conditions of kaolinite on etheramine adsorption: A comparative analysis using chemome tric tools. Journal of Environmental Management. 197, 393-403. Retrieved from https://doi.org/10.1016/j.jenvman.2017.04.003 DOI: https://doi.org/10.1016/j.jenvman.2017.04.003

Lee, S.M., Lalmunsama, Thanhimngliana, Tiwari, D. (2015) Porous hybrid materials in theremediation of water contaminated with As(III) and As(V). Chem. Eng. J. 270, 496-507. Retrieved from https://doi.org/10.1016/j.cej.2015.02.053 DOI: https://doi.org/10.1016/j.cej.2015.02.053

M. Ayisha Sidiqua, V.S. Pria. (2021) Removal of yellow dye using composite binded adsorbent developed using natural clay and activated carbon from sapindus seed. Biocatalysis and Agricultural Biotechnology, 33, 101965. Retrieved from https://doi.org/10.1016/j.bcab.2021.101965 DOI: https://doi.org/10.1016/j.bcab.2021.101965

Mishra, S.P., (2014) Adsorption-desorption of heavy metal ions. Curr. Sci. India. 107, 601 -612. Retrieved from https://www.jstor.org/stable/24103532

Mudzielwana, R., Gitari, M. W., & Ndungu, P. (2019) Performance evaluation of surfactant modified kaolin clay in As (III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics. Heliyon, 5, 1-7. Retrieved from https://doi.org/10.1016/j.heliyon.2019.e02756 DOI: https://doi.org/10.1016/j.heliyon.2019.e02756

Mustapha, S., Ndamitso, M. M., Abdulkareem, A. S., Tijani, J. O., Mohammed, A. K., & Shuaib, D. T. (2019) Potential of using kaolin as a natural adsorbent for the removal of pollutants from tannery wastewater. Heliyon, 5, 1-9. Retrieved from https://doi.org/10.1016/j.heliyon.2019.e02923 DOI: https://doi.org/10.1016/j.heliyon.2019.e02923

N.M. Mahmoodi, M. Oveisi, A. (2019) Taghizadeh, M. Taghizadeh. Novel magnetic amine functionalized carbon nanotube/metal-organic framework nanocomposites: from green ultrasound-assisted synthesis to detailed selective pollutant removal model-ling from binary systems. J. Hazard. Mater. 368, 746-759. Retrieved from https://doi.org/10.1016/j.jhazmat.2019.01.107 DOI: https://doi.org/10.1016/j.jhazmat.2019.01.107

N.M. Mahmoodi. (2014) Synthesis of core-shell magnetic adsorbent nanoparticle and se-lectivity analysis for binary system dye removal, J. Ind. Eng. Chem., 20, 2050-2058. Retrieved from https://doi.org/10.1016/j.jiec.2013.09.030 DOI: https://doi.org/10.1016/j.jiec.2013.09.030

Ogbu, I.C., Akpomie, K.G., Osunkunle, A.A., Eze, S.I. (2019) Sawdust-kaolinite composite as efficient sorbent for heavy metal ions. Bangladesh J. Sci. Ind. Res. 54, 99-110. Retrieved from https://doi.org/10.3329/bjsir.v54i1.40736 DOI: https://doi.org/10.3329/bjsir.v54i1.40736

Syahida Farhan Azha, Mohammad Shahadat, Suzylawati Ismail, Syed Wazed Ali, Shaikh Ziauddin Ahammad. (2021) Prospect of clay-based flexible adsorbent coatings as cleaner production technique in wastewater treatment, challenges, and issues: A review. Journal of the Taiwan Institute of Chemical Engineers. 120, 178-206. Retrieved from https://doi.org/10.1016/j.jtice.2021.03.018 DOI: https://doi.org/10.1016/j.jtice.2021.03.018

Q. Wu, R. You, Q. Lv, Y. Xu, W. You, Y. Yu. (2015) Efficient simultaneous removal of Cu(II) and Cr2O72− from aqueous solution by a renewable amphoteric functionalized mesoporous silica. Chem. Eng. J. (Lausanne). 281, 491-501. Retrieved from https://doi.org/10.1016/j.cej.2015.07.019 DOI: https://doi.org/10.1016/j.cej.2015.07.019

Rao RAK, Ikram S, Uddin MK. (2014) Removal of Cd (II) from aqueous solution by exploring the biosorption characteristics of gaozaban (Onosma bracteatum). J Environ Chem Engg, 1, 1155-1164. Retrieved from https://doi.org/10.1016/j.jece.2014.04.008 DOI: https://doi.org/10.1016/j.jece.2014.04.008

Ridwan, Basuki Wirjosentono, Tamrin, R Siburian, Teuku Rihayat, Nurhanifa. (2018) Modification of PLA/PCL/Aceh's bentonite nanocomposites as biomedical materials, AIP Conference Proceedings. 2049, 1-6. Retrieved from https://doi.org/10.1063/1.5082413 DOI: https://doi.org/10.1063/1.5082413

Roosta, M., Ghaedi, M., Shokri, N., Daneshfar, A., Sahraei, R., Asghari, A. (2017) Optimization of the combined ultrasonic assisted/adsorption method forthe removal of malachite green by gold nanoparticles loaded onactivated carbon: Experimental design. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 118, 55-65. Retrieved from https://doi.org/10.1016/j.saa.2013.08.082 DOI: https://doi.org/10.1016/j.saa.2013.08.082

Safitri, Nelly, Syahputra, R, Putri, K, Rihayat, Teuku, Aidy, Nurhanifa, (2020) "Refining Citronella Oil (Cymbopogon Nardus L) by Utilizing Sunlight Using Solar Cells (Photovoltaics)," IOP Conference Series: Materials Science and Engineering,854, 012051. Retrieved from https://doi.org/10.1088/1757-899X/854/1/012051 DOI: https://doi.org/10.1088/1757-899X/854/1/012051

Saleh, A.T., Sari, A., Tuzen, M. (2016) Chitosan-modified vermiculite for As (III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies. J. Mol. Liq. 219, 937-945. Retrieved from https://doi.org/10.1016/j.molliq.2016.03.060 DOI: https://doi.org/10.1016/j.molliq.2016.03.060

Santhosh, Ch, Velmurugan, V., Jacob, G., Jeong, S.K., Grace, A.N., Bhatnagar, A. (2016) Role of nanomaterials in water treatment applications : a review. Chem. Eng. J. 306, 1116 -1137. Retrieved from https://doi.org/10.1016/j.cej.2016.08.053 DOI: https://doi.org/10.1016/j.cej.2016.08.053

Santi, Raya, I., Zakir, M. (2014) The Adsorption of Pb (II) Ions on Activated Carbon from Rice Husk, Irradiated by Ultrasonic Waves:Kinetic and Thermodynamics Studies. Journal of Natural Sciences Research. 4, 4-9.

Singh, N., Gupta, S.K., (2016) Adsorption of heavy metals: a review. Int. J. Innov. Res. Sci. Eng. Technol., 5, 2267 -2281.

Sodeifian, G., Ali, S. (2018) Utilization of ultrasonic-assisted RESOLV (US-RESOLV) with polymeric stabilizers for production of amiodarone hydrochloride nanoparticles: Optimization of the process. Chem. Eng. Res. 142, 268-284. Retrieved from https://doi.org/10.1016/j.cherd.2018.12.020 DOI: https://doi.org/10.1016/j.cherd.2018.12.020

Soltani, Darvishi Cheshmeh, Jorfi, S., Safari, M., Rajaei, M.-S., (2016) Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach. J. Environ. Manag. 179, 47-57. Retrieved from https://doi.org/10.1016/j.jenvman.2016.05.001 DOI: https://doi.org/10.1016/j.jenvman.2016.05.001

Sun, K., Shi, Y., Chen, H., Wang, X., Li, Z. (2015) Extending surfactant-modified 2:1 clay minerals for the uptake and removal of diclofenac from water. J. Hazard Mater. 323, 567-574. Retrieved from https://doi.org/10.1016/j.jhazmat.2016.05.038 DOI: https://doi.org/10.1016/j.jhazmat.2016.05.038

Suryani, Fitria, Rihayat, Teuku, Aidy, Nurhanifa, Hasnah, T, (2020) "Chitosan Modified Bio-Fibre Based Board as Antimicrobial and Anti-Crack Board," IOP Conference Series: Materials Science and Engineering, 854, 012050. Retrieved from https://doi.org/10.1088/1757-899X/854/1/012050 DOI: https://doi.org/10.1088/1757-899X/854/1/012050

Suryani, Harry Agusnar, Basuki Wirjosentono, Teuku Rihayat, Nurhanifa. (2018) Thermal degradation of Aceh's bentonite reinforced poly lactic acid (PLA) based on renewable resources for packaging application. AIP Conference Proceedings. 2049, 1-5. Retrieved from https://doi.org/10.1063/1.5082445 DOI: https://doi.org/10.1063/1.5082445

Teuku Rihayat, Suryani, Satriananda, Ridwan, Nurhanifa, Alfian Putra, Nia Audina, Muhammad Yunus, Sariadi, Safari, Ramzi Jalal, Nani Siska Putri Khan, Saifuddin. (2018) Influence of coating polyurethane with mixture of bentonite and chitosan nanocomposites. AIP Conference Proceedings. 2049, 1-6. Retrieved from https://doi.org/10.1063/1.5082425 DOI: https://doi.org/10.1063/1.5082425

Teuku Rihayat, Suryani, Zaimahwati, Salmyah, Sariadi, Fitria, Satriananda, Alfian Putra, Zahra Fona, Juanda, Raudah, Aida Safitri, Mawaddah, Nurhanifa, Shafira Riskina and Wildan Syahputra. (2019). Composition on Essential Oil Extraction from Lemongrass Fragrant by Microwave Air Hydro Distillation Method to Perfume Dermatitis Production. Retrieved from https://doi.org/10.1088/1757-899X/506/1/012053 DOI: https://doi.org/10.1088/1757-899X/506/1/012053

Tingting Zhang, Wei Wang, Yunliang Zhao, Haoyu Bai, Tong Wen, Shichang Kang, Guangsen Song, Shaoxian Song, Sridhar Komarneni, (2021) Removal of heavy metals and dyes by clay-based adsorbents: From natural clays to 1D and 2D nano-composites. Chemical Engineering Journal, 420, 127574. Retrieved from https://doi.org/10.1016/j.cej.2020.127574 DOI: https://doi.org/10.1016/j.cej.2020.127574

Tripathi, A., Ranjan, M.R., (2015) Heavy metal removal from wastewater using low cost adsorbents. J. Bioremediat. Biodegr., 6, 315-320. Retrieved from https://doi.org/10.4172/2155-6199.1000315 DOI: https://doi.org/10.4172/2155-6199.1000315

Uddin, Mohammad Kashif. (2017) A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the Past Decade. Chemical Engineering Journal, 308, 438-62. Retrieved from https://doi.org/10.1016/j.cej.2016.09.029 DOI: https://doi.org/10.1016/j.cej.2016.09.029

Wenbo Wang, Wenting Zhao, Huan Zhang, Jiang Xu, Li Zong, Yuru Kang, Aiqin Wang. (2021) Mesoporous polymetallic silicate derived from naturally abundant mixed clay: A potential robust adsorbent for removal of cationic dye and antibiotic. Powder Technology. 390, 303-314. Retrieved from https://doi.org/10.1016/j.powtec.2021.05.090 DOI: https://doi.org/10.1016/j.powtec.2021.05.090

Downloads

Published

2021-11-30

How to Cite

Putra, A., Zaimahwati, Syahyadi, R. ., Rihayat, T., & Aidy, N. (2021). REMOVAL OF HG(II) METAL IONS USING KAOLIN ADSORBENTS MODIFIED WITH ANIONIC SURFACTANT AND EFFICIENT ULTRASONIC ASSISTED. International Journal of Research -GRANTHAALAYAH, 9(11), 72–84. https://doi.org/10.29121/granthaalayah.v9.i11.2021.4379