BIOLOGICAL SEXUAL PROFILE BASED ON LINEAR DIMENSIONS OF HUMERI AND FEMURS OF ADULT BRAZILIAN HUMAN SKELETONS

Authors

  • Evelyne Pessoa Soriano Center For Studies In Forensic Anthropology (CEAF), University of Pernambuco (UPE), Brazil https://orcid.org/0000-0001-8337-0194
  • Rodrigo Araújo de Queiroz Center For Studies In Forensic Anthropology (CEAF), University of Pernambuco (UPE), Brazil https://orcid.org/0000-0002-5620-9431
  • Emília Alves do Nascimento Center For Studies In Forensic Anthropology (CEAF), University of Pernambuco (UPE), Brazil https://orcid.org/0000-0002-0352-8439
  • Patrícia Moreira Rabello Faculdade COESP, Brazil
  • Luiz Gutenberg Toledo de Miranda Coelho Junior Center For Studies In Forensic Anthropology (CEAF), University of Pernambuco (UPE), Brazil
  • Marcus Vitor Diniz de Carvalho Center For Studies In Forensic Anthropology (CEAF), University of Pernambuco (UPE), Brazil https://orcid.org/0000-0003-1270-2352

DOI:

https://doi.org/10.29121/granthaalayah.v9.i10.2021.4346

Keywords:

Human Identification, Forensic Anthropology, Sexual Dimorphism, Sex Determination Analysis, Humerus, Femur

Abstract

This research aimed to assess the predictive ability and applicability for sexual diagnosis of algorithms developed from measurements of humeri and femurs from skeletons belonging to the CEAF Identified Skeletal Collection of the University of Pernambuco, Brazil. The sample was composed of 483 humeri and 452 femurs, obtained from 401 skeletons, 208 male and 193 female, with ages ranging from 15 to 109 years. The variables used were the transverse and vertical diameters of the humeral and femoral heads and the epicondylar width of these bones. The data collected were analyzed using R software (version 3.6.1, R Foundation for Statistical Computing). Only the univariate logistic regressions were considered predictive, making it possible to estimate sex based on any single variable in this study. The accuracy ranged from 93.8% to 97.5% for the humerus evaluation and from 92.9% to 95.6% for femurs, with the transverse diameter of the right humeral head being the most dimorphic measurement. Therefore, it is inferred that the sexual dimorphism present in the measurements of the humeri and femurs of our sample is high and enables the classification of sex reliably and assertively using the algorithms created.

Downloads

Download data is not yet available.

References

Albanese J, Eklics G, Tuck A. (2008) A metric method for sex determination using the proximal femur and fragmentary hipbone. J Forensic Sci;53:1283-8. Retrieved from https://doi.org/10.1111/j.1556-4029.2008.00855.x DOI: https://doi.org/10.1111/j.1556-4029.2008.00855.x

Alunni-Perret V, Staccini P, Quatrehomme G. (2008) Sex determination from the distal part of the femur in a French contemporary population. Forensic Sci Int;175:113-7. Retrieved from https://doi.org/10.1016/j.forsciint.2007.05.018 DOI: https://doi.org/10.1016/j.forsciint.2007.05.018

Arbenz GO. (1988) Legal Medicine and Forensic Anthropology, São Paulo: Livraria Atheneu, , 562p.

Boldsen JL, Milner GR, Boldsen SK. (2015) Sex estimation from modern American humeri and femora, accounting for sample variance structure. Am J Phys Anthropol;158:745-50. Retrieved from https://doi.org/10.1002/ajpa.22812 DOI: https://doi.org/10.1002/ajpa.22812

Brůžek J, Santos F, Dutailly B, Murail P, Cunha E. (2017) Validation and reliability of the sex estimation of the human os coxae using freely available DSP2 software for bioarchaeology and forensic anthropology. Am J Phys Anthropol;164:440-9. Retrieved from https://doi.org/10.1002/ajpa.23282 DOI: https://doi.org/10.1002/ajpa.23282

Buikstra JE, Ubelaker DH. (1995) Standards for data collection from human skeletal remains, Edited by Jane E. Buikstra and Douglas H. Ubelaker, 272 pp. Fayetteville: Arkansas Archeological Survey Research Series No. 44, 1994. Am J Human Biol;7:672-672. Retrieved from https://doi.org/10.1002/ajhb.1310070519 DOI: https://doi.org/10.1002/ajhb.1310070519

Canãdas EV, Gonzalo JC. (2021) Identificación en el sujeto vivo. In: Calabuig, G. Medicina Legal y

Carvalho MVD, Lira VF, Nascimento EA, Kobayashi SBT, Araújo LF, Almeida AC, Petraki GGP, Cunha E, Soriano EP. (2020) New acquisitions of a contemporary Brazilian Identified Skeletal Collection. Forensic Sci Int: Reports;2:100050. Retrieved from https://doi.org/10.1016/j.fsir.2019.100050 DOI: https://doi.org/10.1016/j.fsir.2019.100050

Carvallo D, Retamal R. (2020) Sex estimation using the proximal end of the femur on a modern Chilean sample. Forensic Sci Int Reports ;2 :100077. Retrieved from https://doi.org/10.1016/j.fsir.2020.100077 DOI: https://doi.org/10.1016/j.fsir.2020.100077

Chatterjee PM, Krishan K, Singh RK, Kanchan Tanuj. (2020) Sex estimation from the femur using discriminant function analysis in a Central Indian population. Med Sci Law ;60 :112-21. Retrieved from https://doi.org/10.1177/0025802419900576 DOI: https://doi.org/10.1177/0025802419900576

Chiba F, Makino Y, Torimitsu S, Motomura A, Inokuchi G, Ishii N, Hoshioka Y, Abe H, Yamaguchi R, Sakuma A, Nagasawa S, Saito H, Yajima D, Fukui Y, Iwase H. (2018) Sex estimation based on femoral measurements using multidetector computed tomography in cadavers in modern Japan. Forensic Sci Int;292:262.e1-262.e6. Retrieved from https://doi.org/10.1016/j.forsciint.2018.09.027 DOI: https://doi.org/10.1016/j.forsciint.2018.09.027

Colman K, Janssen MCL, Stull KE, van Rijn RR, Oostra RJ, de Boer HH, van der Merwe AE. (2018) Dutch population specific sex estimation formulae using the proximal femur. Forensic Sci Int;286:268.e1-268.e8. Retrieved from https://doi.org/10.1016/j.forsciint.2017.12.029 DOI: https://doi.org/10.1016/j.forsciint.2017.12.029

Coma JMR. (1999) Antropología Forense, 1, Ministério de Justiça, Centro de publicaciones,.

Couto RC. (2011) Medical Expertise & Forensic Odontology, Rio de Janeiro: Medbook.

Cunha E, Lopez-Capp TT, Inojosa R, Marques SR, Moraes LOC, Liberti E, Machado CEP, Paiva LAS, Francesquini Júnior L, Daruge Junior E, Almeida Junior E, Soriano E. (2018) The Brazilian identified human osteological collections. Forensic Sci Int;289:449.e1-449.e6. Retrieved from https://doi.org/10.1016/j.forsciint.2018.05.040 DOI: https://doi.org/10.1016/j.forsciint.2018.05.040

Cuzzullin MC, Curate F, Freire AR, Costa ST, Prado FB, Daruge Junior E, Cunha E, Rossi AC. (2020) Validation of anthropological measures of the human femur for sex estimation in Brazilians. Australian J Forensic Sci;1-14. Retrieved from https://doi.org/10.1080/00450618.2020.1729411 DOI: https://doi.org/10.1080/00450618.2020.1729411

Duckworth WLH. (1919) The international agreement for the Unification of Anthropometric measurements to be made on the living subject. Report Of the commission appointed by the XIVth International Congress of prehistoric anthropology and archaeology at Geneva, to supplement the work commenced by the XIIIth Congress in the session at Monaco (1906). English translation of the official version. Am J Phys Anthropol 1919;2:61-7. Retrieved from https://doi.org/10.1002/ajpa.1330020114 DOI: https://doi.org/10.1002/ajpa.1330020114

Forriol F, Shapiro F. (2005) Bone development: interaction of molecular components and biophysical forces. Clin Orthop Relat Res;432:14-33. Retrieved from https://doi.org/10.1097/01.blo.0000156001.78631.e9 DOI: https://doi.org/10.1097/01.blo.0000156001.78631.e9

Fowler G, Hughes C. (2018) Development and Assessment of Postcranial Sex Estimation Methods for a Guatemalan Population. J Forensic Sci;63:490-6. Retrieved from https://doi.org/10.1111/1556-4029.13570 DOI: https://doi.org/10.1111/1556-4029.13570

Frutos LR. (2005) Metric determination of sex from the humerus in a Guatemalan forensic sample. Forensic Sci Int;147:153-7. Retrieved from https://doi.org/10.1016/j.forsciint.2004.09.077 DOI: https://doi.org/10.1016/j.forsciint.2004.09.077

Galvão LCC, Vitoria EM. (1996) Determinação do sexo através do diâmetro vertical da cabeça do úmero e fêmur. Saúde, Ética & Justiça ;1:67-75. Retrieved from https://doi.org/10.11606/issn.2317-2770.v1i1p67-75

Gonçalves D. (2014) Evaluation of the effect of secular changes in the reliability of osteometric methods for the sex estimation of Portuguese individuals. Cad. GEEvH ;3:53-65.

Isçan MY, Shihai D. (1995) Sexual dimorphism in the Chinese femur. Forensic Sci Int ;74:79-87. Retrieved from https://doi.org/10.1016/0379-0738(95)01691-B DOI: https://doi.org/10.1016/0379-0738(95)01691-B

Kranioti EF, Michalodimitrakis M. (2009) Sexual dimorphism of the humerus in contemporary Cretans--a population-specific study and a review of the literature. J Forensic Sci;54:996-1000. Retrieved from https://doi.org/10.1111/j.1556-4029.2009.01103.x DOI: https://doi.org/10.1111/j.1556-4029.2009.01103.x

Maass P, Friedling J. (2018) Morphometric analysis of the humerus in an adult South African cadaveric sample. Forensic Sci Int;289:451.e1-451.e9. Retrieved from https://doi.org/10.1016/j.forsciint.2018.04.037 DOI: https://doi.org/10.1016/j.forsciint.2018.04.037

Martin R, Saller K, (1957) Lehrbuch der anthropologie, Stuttgart, Gustav Fisher Verlag,.

Masotti S, Succi-Leonelli E, Gualdi-Russo E. (2013) Cremated human remains: is measurement of the lateral angle of the meatus acusticus internus a reliable method of sex determination? Int J Legal Med;127:1039-44. Retrieved from https://doi.org/10.1007/s00414-013-0822-y DOI: https://doi.org/10.1007/s00414-013-0822-y

Moore M, DiGangi EA, Ruíz FPN, Davila OJH, Medina CS. (2016) Metric Sex Estimation from the Postcranial Skeleton for the Colombian Population. Forensic Sci Int;262:286.e1-8. Retrieved from https://doi.org/10.1016/j.forsciint.2016.02.018 DOI: https://doi.org/10.1016/j.forsciint.2016.02.018

Murail P, Brůžek J, Houët F, Cunha E. DSP, (2005) A tool for probabilistic sex diagnosis using worldwide variability in hip-bone measurements. Bulletins et Mémoires de la Société d'Anthropologie de Paris;17:167-76. Retrieved from https://doi.org/10.4000/bmsap.1157 DOI: https://doi.org/10.4000/bmsap.1157

Musilová B, Dupej J, Brůžek J, Bejdová Š, Velemínská J. (2019) Sex and ancestry related differences between two Central European populations determined using exocranial meshes. Forensic Sci Int;297:364-369. Retrieved from https://doi.org/10.1016/j.forsciint.2019.02.034 DOI: https://doi.org/10.1016/j.forsciint.2019.02.034

Navega D, Vicente R, Vieira DN, Ross A, Cunha E. (2015) Sex estimation from the tarsal bones in a Portuguese sample: a machine learning approach. Int J Legal Med;129:651-59. Retrieved from https://doi.org/10.1007/s00414-014-1070-5 DOI: https://doi.org/10.1007/s00414-014-1070-5

Ogedengbe OO, Ajayi SA, Komolafe OA, Zaw AK, Naidu ECS, Azu OO. (2017) Sex determination using humeral dimensions in a sample from KwaZulu-Natal: an osteometric study. Anat Cell Biol;50:180-86. Retrieved from https://doi.org/10.5115/acb.2017.50.3.180 DOI: https://doi.org/10.5115/acb.2017.50.3.180

Papadatou-Pastou M, Martin M, Munafò MR, Ntolka E, Ocklenburg S, Paracchini S. (2019) The prevalence of left-handedness: Five meta-analyses of 200 studies totaling 2,396,170 individuals. PsyArxiv. Apr 23. Retrieved from https://doi.org/10.1037/bul0000229 DOI: https://doi.org/10.31234/osf.io/5gjac

Quatrehomme G, Radomana I, Nogueira L, du Jardin P, Alunni V. (2016) Sex determination using the DSP (probabilistic sex diagnosis) method on the coxal Bone: Efficiency of method according to number of available variables. Forensic Sci Int;272:190-3. Retrieved from https://doi.org/10.1016/j.forsciint.2016.10.020 DOI: https://doi.org/10.1016/j.forsciint.2016.10.020

Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R. (2004) The 'muscle-bone unit' during the pubertal growth spurt. Bone;34:771-5. Retrieved from https://doi.org/10.1016/j.bone.2004.01.022 DOI: https://doi.org/10.1016/j.bone.2004.01.022

Rauch F. (2005) Bone Growth in Length and Width: The Yin and Yang of Bone Stability. J Musculoskelet Neuronal Interact;5:194-201.

Reddy BB, Doshi MA. (2017) Sex determination from adult human humerus by discriminant function analysis. Int J Res Med Sci;5:3891-7. Retrieved from https://doi.org/10.18203/2320-6012.ijrms20173702 DOI: https://doi.org/10.18203/2320-6012.ijrms20173702

Siddiqi N, Norrish M. (2018) Sexual Dimorphism from Femoral Bone Dimensions Parameters among African Tribes and South Africans of European Descent. Int J Forensic Sci;3:000135. Retrieved from https://doi.org/10.23880/IJFSC-16000135 DOI: https://doi.org/10.23880/IJFSC-16000135

Singh PK, Karki RK, Palikh AK, Menezes RG. (2016) Sex Determination From the Bicondylar Width of the Femur: A Nepalese Study Using Digital X-ray Images. Kathmandu Univ Med J (KUMJ);14:198-201.

Soni G, Dhall U, Chhabra S. (2013) Determination of sex from humerus: discriminant analysis. Australian J Forensic Sci;45:147-52. Retrieved from https://doi.org/10.1080/00450618.2012.697917 DOI: https://doi.org/10.1080/00450618.2012.697917

Spradley MK, Jantz RL. (2011) Sex estimation in forensic anthropology: skull versus postcranial elements. J Forensic Sci;56:289-96. Retrieved from https://doi.org/10.1111/j.1556-4029.2010.01635.x DOI: https://doi.org/10.1111/j.1556-4029.2010.01635.x

Steyn M, Isçan MY. (1997) Sex determination from the femur and tibia in South African whites. Forensic Sci Int;90:111-9. Retrieved from https://doi.org/10.1016/S0379-0738(97)00156-4 DOI: https://doi.org/10.1016/S0379-0738(97)00156-4

Stulp G, Barrett L. (2016) Evolutionary perspectives on human height variation. Biol Rev Camb Philos Soc;91:206-34. Retrieved from https://doi.org/10.1111/brv.12165 DOI: https://doi.org/10.1111/brv.12165

Thompson T, Black SM. (2007) Forensic human identification: an introduction, Boca Raton,; p. 544. Retrieved from https://doi.org/10.1201/9781420005714 DOI: https://doi.org/10.1201/9781420005714

Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Yajima D, Inokuchi G, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H. (2016) Sex estimation based on scapula analysis in a Japanese population using multidetector computed tomography. Forensic Sci Int; 262:285.e1-285.e5. Retrieved from https://doi.org/10.1016/j.forsciint.2016.02.023 DOI: https://doi.org/10.1016/j.forsciint.2016.02.023

Toxicología, Barcelona, Masson, (2004).

Vick A. (2005) Sexual dimorphism and the transition to agriculture [electronic resource]: A meta-analysis, [Thesis], Master's of Arts, University of Florida, 58p.

Zapico SC, Adserias-Garriga J. (2021) Estimation of sex based on postcranial elements in European American and Latin American populations. J Forensic Legal Med;77:102098. Retrieved from https://doi.org/10.1016/j.jflm.2020.102098 DOI: https://doi.org/10.1016/j.jflm.2020.102098

Zymbal V, Janz KF, Baptista F. (2017) Sexual dimorphism in bone-muscle relationship in young adults. J Sports Sci;35:2433-38. Retrieved from https://doi.org/10.1080/02640414.2016.1273535 DOI: https://doi.org/10.1080/02640414.2016.1273535

Downloads

Published

2021-11-10

How to Cite

Soriano, E. P., de Queiroz, R. A., do Nascimento, E. A., Rabello, P. M., de Miranda Coelho Junior, L. G. T., & de Carvalho, M. V. D. (2021). BIOLOGICAL SEXUAL PROFILE BASED ON LINEAR DIMENSIONS OF HUMERI AND FEMURS OF ADULT BRAZILIAN HUMAN SKELETONS . International Journal of Research -GRANTHAALAYAH, 9(10), 277–290. https://doi.org/10.29121/granthaalayah.v9.i10.2021.4346