THE BIDIRECTIONAL EFFECT OF CREATINE SUPPORTS THE MAINTENANCE OF OXIDANT-ANTIOXIDANT HOMEOSTASIS DURING EXERCISE

Authors

  • Seyhan Taskin Department of Physiology, Faculty of Medical, Harran University, Turkey
  • Hakim Celik Department of Physiology, Faculty of Medical, Harran University, Turkey
  • Seniz Demiryurek Department of Physiology, Faculty of Medical, Gaziantep University, Turkey
  • Abdullah Taskin Department of Nutrition and Dietetics, Faculty of Health Sciences, Harran University, Turkey

DOI:

https://doi.org/10.29121/granthaalayah.v9.i10.2021.4279

Keywords:

Exercise, Creatine, Thiol Disulfide Homeostasis, Oxidative Stress

Abstract

The importance of supplements used with exercise is increasing day by day. In this study, it was aimed to evaluate the effects of creatine monohydrate (CrM) supplementation with different intensities of exercise on oxidative stress through dynamic thiol disulfide homeostasis. Fourty two BALB/c mice were used and randomly divided into 6 groups; control (C), low-intensity exercise (LIE), high-intensity exercise (HIE), C+CrM (4% of daily diet), LIE+CrM, and HIE+CrM groups. Exercise groups were performed low-intensity (8m/min/30min/day) and high-intensity (24m/min/30min/day) exercise on a mouse treadmill for 8 weeks. At the end of the experimental period, the thiol disulfide homeostasis levels analyzed by using a new automated measurement technique. When the native thiol and total thiol values were examined the difference between the groups was statistically significant (respectively, p=0.029, p=0,035). Creatine intake with exercise decreased native thiol and total thiol levels. However, serum disulfide levels were lower in LIE+CrM compared to other study groups, but there was no statistically significant difference. It is thought that creatine supplementation with exercise reduces the thiol-disulfide homeostasis burden of the organism, and that after the depletion of creatine stores, the sustainability of oxidant-antioxidant homeostasis can be extended, thus prolonging the duration of antioxidant resistance.

Downloads

Download data is not yet available.

References

Ammar, A., Trabelsi, K., Boukhris, O., Glenn, J. M., Bott, N., Masmoudi, L., Hakim, A., Chtourou, H., Driss, T., Hoekelmann, A., & Abed, K. El. (2020). Effects of aerobic-, anaerobic- and combined-based exercises on plasma oxidative stress biomarkers in healthy untrained young adults. International Journal of Environmental Research and Public Health, 17(7). Retrieved from https://doi.org/10.3390/ijerph17072601 DOI: https://doi.org/10.3390/ijerph17072601

Antonio, J., Candow, D. G., Forbes, S. C., Gualano, B., Jagim, A. R., Kreider, R. B., Rawson, E. S., Smith-Ryan, A. E., VanDusseldorp, T. A., Willoughby, D. S., & Ziegenfuss, T. N. (2021). Common questions and misconceptions about creatine supplementation: what does the scientific evidence really show? Journal of the International Society of Sports Nutrition, 18(1), 1-17. Retrieved from https://doi.org/10.1186/s12970-021-00412-w DOI: https://doi.org/10.1186/s12970-021-00412-w

Bediz, C. Ş. (2020). Egzersizde Enerji Metabolizması. In E. Ağar (Ed.), İnsan Fizyolojisi (pp. 833-842). İstanbul Tıp Kitabevleri.

Brunetta, H. S., Holwerda, A. M., van Loon, L. J. C., & Holloway, G. P. (2020). Mitochondrial ROS and Aging: Understanding Exercise as a Preventive Tool. Journal of Science in Sport and Exercise, 2(1), 15-24. Retrieved from https://doi.org/10.1007/s42978-019-00037-1 DOI: https://doi.org/10.1007/s42978-019-00037-1

Cao, W., Li, M., Wu, T., Feng, F., Feng, T., Xu, Y., & Sun, C. (2017). αMSH prevents ROS-induced apoptosis by inhibiting Foxo1/mTORC2 in mice adipose tissue. Oncotarget, 8(25), 40872-40884. Retrieved from https://doi.org/10.18632/oncotarget.16606 DOI: https://doi.org/10.18632/oncotarget.16606

Celik, H., Kilic, T., Kaplan, D. S., Eren, M. A., Erel, O., Karakilcik, A. Z., & Bagci, C. (2019a). The effect of newly initiated exercise training on dynamic Thiol/disulphide homeostasis in sedentary obese adults. Anais Da Academia Brasileira de Ciencias, 91(4), 1-10. Retrieved from https://doi.org/10.1590/0001-3765201920180930 DOI: https://doi.org/10.1590/0001-3765201920180930

Celik, H., Kucuk, M., Aktas, Y., Zerin, M., Erel, O., Neselioglu, S., & Kaplan, D. S. (2019b). The protective effects of pistachio nut (Pistacia vera L.) on thiol/disulfide homeostasis in young soccer players undergoing a strenuous exercise training program. Acta Medica Mediterranea, 35(2), 893-897. Retrieved from https://doi.org/10.19193/0393-6384_2019_2_135

Chen, X., Li, L., Guo, J., Zhang, L., Yuan, Y., Chen, B., Sun, Z., Xu, J., & Zou, J. (2016). Treadmill running exercise prevents senile osteoporosis and upregulates the Wnt signaling pathway in SAMP6 mice. Oncotarget, 7(44), 71072-71086. Retrieved from https://doi.org/10.18632/oncotarget.12125 DOI: https://doi.org/10.18632/oncotarget.12125

Ellman, G., & Lysko, H. (1979). A precise method for the determination of whole blood and plasma sulfhydryl groups. Analytical Biochemistry, 93(C), 98-102. Retrieved from https://doi.org/10.1016/S0003-2697(79)80122-0 DOI: https://doi.org/10.1016/S0003-2697(79)80122-0

Erel, O., & Neselioglu, S. (2014). A novel and automated assay for thiol/disulphide homeostasis. Clinical Biochemistry, 47(18), 326-332. Retrieved from https://doi.org/10.1016/j.clinbiochem.2014.09.026 DOI: https://doi.org/10.1016/j.clinbiochem.2014.09.026

Gastin, P. B. (2001). Energy system interaction and relative contribution during maximal exercise. Sports Medicine, 31(10), 725-741. Retrieved from https://doi.org/10.2165/00007256-200131100-00003 DOI: https://doi.org/10.2165/00007256-200131100-00003

Gol, M., Özkaya, B., Yildirim, C., & Bal, R. (2019). Regular exercise, overweight/obesity and sedentary lifestyle cause adaptive changes in thiol-disulfide homeostasis. Anais Da Academia Brasileira de Ciencias, 91(2), e20180547. Retrieved from https://doi.org/10.1590/0001-3765201920180547 DOI: https://doi.org/10.1590/0001-3765201920180547

González-Bartholin, R., Mackay, K., Valladares, D., Zbinden-Foncea, H., Nosaka, K., & Peñailillo, L. (2019). Changes in oxidative stress, inflammation and muscle damage markers following eccentric versus concentric cycling in older adults. European Journal of Applied Physiology, 119(10), 2301-2312. Retrieved from https://doi.org/10.1007/s00421-019-04213-7 DOI: https://doi.org/10.1007/s00421-019-04213-7

Hargreaves, M., & Spriet, L. L. (2020). Skeletal muscle energy metabolism during exercise. Nature Metabolism, 2(9), 817-828. Retrieved from https://doi.org/10.1038/s42255-020-00290-7, https://doi.org/10.1038/s42255-020-0251-4 DOI: https://doi.org/10.1038/s42255-020-0251-4

Harris, R. C., Söderlund, K., & Hultman, E. (1992). Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clinical Science, 83(3), 367-374. Retrieved from https://doi.org/10.1042/cs0830367 DOI: https://doi.org/10.1042/cs0830367

Havenetidis, K. (2016). The use of creatine supplements in the military. Journal of the Royal Army Medical Corps, 162(4), 242-248. Retrieved from https://doi.org/10.1136/jramc-2014-000400 DOI: https://doi.org/10.1136/jramc-2014-000400

Kayacan, Y., Çetinkaya, A., Yazar, H., & Makaracı, Y. (2019a). Oxidative stress response to different exercise intensity with an automated assay: thiol/disulphide homeostasis. Archives of Physiology and Biochemistry, 1-5. Retrieved from https://doi.org/10.1080/13813455.2019.1651868 DOI: https://doi.org/10.1080/13813455.2019.1651868

Kayacan, Y., Yazar, H., Cerit, G., & Ghojebeigloo, B. E. (2019b). A new oxidative stress indicator: Effect of 5-hydroxytryptophan on thiol-disulfide homeostasis in exercise. Nutrition, 63-64, 114-119. Retrieved from https://doi.org/10.1016/j.nut.2019.01.013 DOI: https://doi.org/10.1016/j.nut.2019.01.013

Kayacan, Y., Yazar, H., Kisa, E. C., & Ghojebeigloo, B. E. (2018). A novel biomarker explaining the role of oxidative stress in exercise and l-tyrosine supplementation: thiol/disulphide homeostasis. Archives of Physiology and Biochemistry, 124(3), 232-236. Retrieved from https://doi.org/10.1080/13813455.2017.1388410 DOI: https://doi.org/10.1080/13813455.2017.1388410

Kreider, R. B. (2003). Effects of creatine supplementation on performance and training adaptations. Molecular and Cellular Biochemistry, 244(1-2), 89-94. Retrieved from https://doi.org/10.1023/A:1022465203458 DOI: https://doi.org/10.1007/978-1-4615-0247-0_13

Leem, Y.-H., Kato, M., & Chang, H. (2018). Regular exercise and creatine supplementation prevent chronic mild stress-induced decrease in hippocampal neurogenesis via Wnt/GSK3β/β-catenin pathway. Journal of Exercise Nutrition & Biochemistry, 22(2), 1-6. Retrieved from https://doi.org/10.20463/jenb.2018.0009 DOI: https://doi.org/10.20463/jenb.2018.0009

Lü, J. M., Lin, P. H., Yao, Q., & Chen, C. (2010). Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. Journal of Cellular and Molecular Medicine, 14(4), 840-860. Retrieved from https://doi.org/10.1111/j.1582-4934.2009.00897.x DOI: https://doi.org/10.1111/j.1582-4934.2009.00897.x

McGee, S. L., & Hargreaves, M. (2020). Exercise adaptations: molecular mechanisms and potential targets for therapeutic benefit. Nature Reviews Endocrinology, 16(9), 495-505. Retrieved from https://doi.org/10.1038/s41574-020-0377-1 DOI: https://doi.org/10.1038/s41574-020-0377-1

Moghetti, P., Bacchi, E., Brangani, C., Donà, S., & Negri, C. (2016). Metabolic Effects of Exercise. Frontiers of Hormone Research, 47, 44-57. Retrieved from https://doi.org/10.1159/000445156 DOI: https://doi.org/10.1159/000445156

Mohd Sukri, N. (2021). Does vitamin C minimise exercise-induced oxidative stress? Sport Sciences for Health, 17(3), 505-533. Retrieved from https://doi.org/10.1007/s11332-021-00756-5 DOI: https://doi.org/10.1007/s11332-021-00756-5

Momaya, A., Fawal, M., & Estes, R. (2015). Performance-Enhancing Substances in Sports: A Review of the Literature. Sports Medicine, 45(4), 517-531. Retrieved from https://doi.org/10.1007/s40279-015-0308-9 DOI: https://doi.org/10.1007/s40279-015-0308-9

Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal, 417(1), 1-13. Retrieved from https://doi.org/10.1042/BJ20110539, https://doi.org/10.1042/BJ20081386 DOI: https://doi.org/10.1042/BJ20081386

Nikolaidis, M. G. (2017). The effects of resistance exercise on muscle damage, position sense, and blood redox status in young and elderly individuals. Geriatrics (Switzerland), 2(3). Retrieved from https://doi.org/10.3390/geriatrics2030020 DOI: https://doi.org/10.3390/geriatrics2030020

Parker, L., Mcguckin, T. A., & Leicht, A. S. (2014). Influence of exercise intensity on systemic oxidative stress and antioxidant capacity. Clinical Physiology and Functional Imaging, 34(5), 377-383. Retrieved from https://doi.org/10.1111/cpf.12108 DOI: https://doi.org/10.1111/cpf.12108

Poortmans, J. R., Rawson, E. S., Burke, L. M., Stear, S. J., & Castell, L. M. (2010). A-Z of nutritional supplements: Dietary supplements, sports nutrition foods and ergogenic aids for health and performance Part 11. British Journal of Sports Medicine, 44(10), 765-766. Retrieved from https://doi.org/10.1136/bjsm.2010.076117 DOI: https://doi.org/10.1136/bjsm.2010.076117

Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2013). Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants and Redox Signaling, 18(10), 1208-1246. Retrieved from https://doi.org/10.1089/ars.2011.4498 DOI: https://doi.org/10.1089/ars.2011.4498

Stefani, G. P., Nunes, R. B., Dornelles, A. Z., Alves, J. P., Piva, M. O., Domenico, M. Di, Rhoden, C. R., & Lago, P. D. (2014). Effects of creatine supplementation associated with resistance training on oxidative stress in different tissues of rats. Journal of the International Society of Sports Nutrition, 11(1), 11. Retrieved from https://doi.org/10.1186/1550-2783-11-11 DOI: https://doi.org/10.1186/1550-2783-11-11

Thirupathi, A., Wang, M., Lin, J. K., Fekete, G., István, B., Baker, J. S., & Gu, Y. (2021). Effect of Different Exercise Modalities on Oxidative Stress: A Systematic Review. In BioMed Research International (Vol. 2021). Retrieved from https://doi.org/10.1155/2021/1947928 DOI: https://doi.org/10.1155/2021/1947928

Vargas-Mendoza, N., Morales-González, Á., Madrigal-Santillán, E. O., Madrigal-Bujaidar, E., Álvarez-González, I., García-Melo, L. F., Anguiano-Robledo, L., Fregoso-Aguilar, T., & Morales-Gonzalez, J. A. (2019). Antioxidant and adaptative response mediated by Nrf2 during physical exercise. Antioxidants, 8(6). Retrieved from https://doi.org/10.3390/antiox8060196 DOI: https://doi.org/10.3390/antiox8060196

Wadley, A. J., Chen, Y. W., Lip, G. Y. H., Fisher, J. P., & Aldred, S. (2016). Low volume-high intensity interval exercise elicits antioxidant and anti-inflammatory effects in humans. Journal of Sports Sciences, 34(1), 1-9. Retrieved from https://doi.org/10.1080/02640414.2015.1035666 DOI: https://doi.org/10.1080/02640414.2015.1035666

Wallimann, T., Tokarska-Schlattner, M., & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino Acids, 40(5), 1271-1296. Retrieved from https://doi.org/10.1007/s00726-011-0877-3 DOI: https://doi.org/10.1007/s00726-011-0877-3

Waris, G., & Ahsan, H. (2006). Reactive oxygen species: Role in the development of cancer and various chronic conditions. Journal of Carcinogenesis, 5, 1-8. Retrieved from https://doi.org/10.1186/1477-3163-5-14, https://doi.org/10.1186/1477-3163-5-1 DOI: https://doi.org/10.1186/1477-3163-5-14

Wax, B., Kerksick, C. M., Jagim, A. R., Mayo, J. J., Lyons, B. C., & Kreider, R. B. (2021). Creatine for Exercise and Sports Performance, with Recovery Considerations for Healthy Populations. Nutrients, 13, 1-42. Retrieved from https://doi.org/10.3390/nu13061915 DOI: https://doi.org/10.3390/nu13061915

Downloads

Published

2021-10-31

How to Cite

Taskin, S., Celik, H., Demiryurek, S., & Taskin, A. (2021). THE BIDIRECTIONAL EFFECT OF CREATINE SUPPORTS THE MAINTENANCE OF OXIDANT-ANTIOXIDANT HOMEOSTASIS DURING EXERCISE. International Journal of Research -GRANTHAALAYAH, 9(10), 18–28. https://doi.org/10.29121/granthaalayah.v9.i10.2021.4279