IMPROVEMENT OF THE MICROFLUIDIC DEVICE FOR THE GENERATION OF MONODISPERSE MICROBUBBLES AS DRUG TRANSPORT SYSTEMS

Authors

  • Araujo Filho, W. D. State University Of Bahia (UNEB) - Collegiate Of Physics-Department Of Exact And Earth Sci-ences (DCET 1) - Micro Fluidic Laboratory (LAMIC), Brazil https://orcid.org/0000-0002-6908-8616
  • Chaves Antônio, A. G. S State University of Bahia (UNEB) - Collegiate of Physics-Department of Exact and Earth Sciences (DCET 1) - Micro Fluidic Laboratory (LAMIC)
  • dos Santos, F. F. State University of Bahia (UNEB) - Department of Life Sciences (DCV), Laboratory of Biopharmacy and Drug Analysis https://orcid.org/0000-0001-6822-6856
  • Santos Junior, A. F. State University of Bahia (UNEB) - Department of Life Sciences (DCV), Laboratory of Biopharmacy and Drug Analysis

DOI:

https://doi.org/10.29121/granthaalayah.v9.i8.2021.4145

Keywords:

Microbubbles, Ultrasound, Drugs, Tumours Tratment

Abstract [English]

INTRODUCTION: The localized delivery of drugs has been established since the early eighties of the 20th century as a promising alternative for the localized treatment of tumours, based on the mitigation of side effects produced by traditional methods, notably the administration of chemotherapy by systemic route. Countless scientific works have been dealing with this theme in an attempt to make this therapeutic technique viable and accessible. One of the ways to take the drug to the chosen site is through the use of microbubbles as drug carrier units activated through an ultrasonic field with adequate wavelength and frequency. Therefore, these units must have very peculiar characteristics, such as dimensions, homogeneity, echogenicity and structural characteristics, in addition to the ability to take the therapeutic vector intact to the desired location. In the generation of microbubbles, microfluidic devices of different geometries and different configurations are used, according to the state of the art related to this theme. DEVELOPMENT: In this work the technique used is the fabrication of micro fluidic devices using 3D printing. With this technique, it is possible to manufacture the devices in a single step, eliminating time-consuming and more complex intermediate procedures. The devices were manufactured using an Object Eden 250 printer, using the transparent resin VeroClear®. With these devices it was possible to produce microbubbles with diameters of the order of 16-73 µm with degrees of poly dispersion less than 1%. However, there are difficulties to be overcome, notably with regard to the final composition of the devices. Due to the physical characteristics of the microbubble, notably in relation to its lipid coating layer, the search for drug transport systems is an important strategy.  CONCLUSION: In this work, an account of these difficulties will be made, in addition to the proposition of alternatives to overcome them. Additionally, compatible drugs will be suggested to be attached to microbubbles according to their structural composition.

Downloads

Download data is not yet available.

References

Abolmaali, S. S., Tamaddon, A. M., Dinarvand, R. 2013. "A review of therapeutic challenges and achievements of methotrexate delivery systems for treatment of cancer and rheumatoid arthritis". Cancer Chemotherapy Pharmacololy. 71:1115-1130. Retrived from https://doi.org/10.1007/s00280-012-2062-0 DOI: https://doi.org/10.1007/s00280-012-2062-0

Allen, M. T., Cullis, R. P. 2012. "Liposomal drug delivery systems: From concept to clinical applications". Advanced Drug Delivery Reviews, 65:36-48. Retrived from https://doi.org/10.1016/j.addr.2012.09.037 DOI: https://doi.org/10.1016/j.addr.2012.09.037

Araujo Filho, W. D. et al. "Evaluation of stability and size distribution of sunflower oil coated micro bubbles for localized drug delivery. Biomedical Engineering OnLine,11:71. Retrived from https://doi.org/10.1186/1475-925X-11-71 DOI: https://doi.org/10.1186/1475-925X-11-71

Araujo Filho, W. D.; Araujo, L. M.P. Monodisperse Microbubbles as Drug Carrier Units Having the Olive Oil as the Coating Layer from Devices Manufactured by 3D Printing. International Journal of Biosensors & Bioelectronics, v. 3, p.00059-00064, 2017. Retrived from https://doi.org/10.15406/ijbsbe.2017.03.00059 DOI: https://doi.org/10.15406/ijbsbe.2017.03.00059

Araujo Filho, W. D.; Araujo, L. M.P.; Menezes, D. O.; Mauricio, C. R. M. 2019 3D Printing Techniques in the Manufacture of Microfluidic Devices for Generation of Microbubbles. SCIOL Biomedicine, v. 3, p. 143,.

Araujo Filho, W. D.; Araujo, L. M.P.; Menezes, D. O.; Mauricio, C. R. M. Annexation of Biologically active compounds extracted from plants in the lipid layers of microbubbles for the localized treatment of diseases. DISEASES.INTERNATIONAL JOURNAL OF CURRENT RESEARCH, v. 10, p. 72208-72211, 2018.

Barrat, G. M. 2000. "Therapeutic applications of colloidal drug carriers". Pharma. Sci. Technol. 5:163-171. Retrived from https://doi.org/10.1016/S1461-5347(00)00255-8 DOI: https://doi.org/10.1016/S1461-5347(00)00255-8

Bizerra, A., Silva, V. 2016. "Sistema de Liberação controlada. Revista de Saúde e Meio ambiente". Mato Grosso. 3(2):1-12.

Borden, M. A., M. L. Longo. 2002. "Dissolution behaviour of lipid monolayer coated, air-filled micro bubbles: Effect of lipid hydophobic chain length". Langmuir. 18(24):9225-9233. Retrived from https://doi.org/10.1021/la026082h DOI: https://doi.org/10.1021/la026082h

E stride, M Edirisinghe 2008. Novel microbubble preparation technologies. soft Matter; 4:2350. Retrived from https://doi.org/10.1039/b809517p DOI: https://doi.org/10.1039/b809517p

EC Unger, T Porter, W Culp, R label, T Matsunaga, R Zutshi 2004. Therapeutic applications of lipid-coated microbubbles. adv Drug Deliv Rev; 56:1291-314. Retrived from https://doi.org/10.1016/j.addr.2003.12.006 DOI: https://doi.org/10.1016/j.addr.2003.12.006

Ferguson, H. M., Fréchet, J., Szoka, F. C. 2013. "Clinical developments of chemotherapeutic nanomedicines: polymers and liposomes for delivery of camptothecins and platinum (II) drugs". WIREs Nanomedicine and Nanobiotechnology. 5(2):130-138. Retrived from https://doi.org/10.1002/wnan.1209 DOI: https://doi.org/10.1002/wnan.1209

Fillippin, B. F., Souza, C. L. 2006. "Eficiência terapêutica das formulações lipídicas de anfotericina B". Revista Brasileira de Ciências Farmacêuticas. 42:167-194. Retrived from https://doi.org/10.1590/S1516-93322006000200003 DOI: https://doi.org/10.1590/S1516-93322006000200003

Fiorini, D. T. Chiu 2005. Disposable microfluidic devices: Fabrication, function, and application. Bio techniques; 38:429-46. Retrived from https://doi.org/10.2144/05383RV02 DOI: https://doi.org/10.2144/05383RV02

Gaies, E., Jebabli, N., Trabelsi, S., Salouage, I., Charfi, R., Lakhal, M., Klouz, A. 2012. "Methotrexate Side Effects: Review Article". Drug Metabolism & Toxicology. 3(4):1-5. Retrived from https://doi.org/10.4172/2157-7609.1000125 DOI: https://doi.org/10.4172/2157-7609.1000125

Garstecki, P. 2010. "Formation of Droplets and Bubbles in Microfluidic Systems". Microfluidics Based Microsystems: Fundamentals and Applications". 163-181. Retrived from https://doi.org/10.1007/978-90-481-9029-4_9 DOI: https://doi.org/10.1007/978-90-481-9029-4_9

Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V., Langer, R. 1994. "Biodegradable long-circulating polymeric nanospheres". Science. 263:1600-1603. Retrived from https://doi.org/10.1126/science.8128245 DOI: https://doi.org/10.1126/science.8128245

Huang, X., Li, Z., Yu, Z., Deng, X., Yi, X. 2019. "Recent Advances in the Synthesis, Properties, and Biological Applications of Platinum Nanoclusters". Journal of Nanomaterials. 2019:6248725. Retrived from https://doi.org/10.1155/2019/6248725 DOI: https://doi.org/10.1155/2019/6248725

Lajoline, G. et al. 2016. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. Bio microfluidics, v. 10, n. 1, p. 011501. Retrived from https://doi.org/10.1063/1.4940429 DOI: https://doi.org/10.1063/1.4940429

Levêque, D., Santucci, R., Gourieux, B., Herbrecht, R. 2011. "Pharmacokinetic drug-drug interactions with methotrexate in oncology". Expert Review of Clinical Pharmacology. 4(6):743-750. Retrived from https://doi.org/10.1586/ecp.11.57 DOI: https://doi.org/10.1586/ecp.11.57

Lindner, J. R., S. Kaul. 2001. "Delivery of drugs with ultrasound Echocardiography." 18(4): 329-337. 2001. Retrived from https://doi.org/10.1046/j.1540-8175.2001.00329.x DOI: https://doi.org/10.1046/j.1540-8175.2001.00329.x

Neves, A. P., Vargas, M. D. 2011. "Complexo de Platina (II) na Terapia do Câncer". Revista Virtual de Quimica. 3:196-209. Retrived from https://doi.org/10.5935/1984-6835.20110023 DOI: https://doi.org/10.5935/1984-6835.20110023

P Garstecki, I Gitlin, W Diluzio, GM Whitesides, E Kumacheva, 2004 Ha stone . Formation of monodisperse bubbles in a microfluidic flow-focusing device. appl Phys lett; 85:2649-51. Retrived from https://doi.org/10.1063/1.1796526 DOI: https://doi.org/10.1063/1.1796526

Pancholi, K., E. Stride, et al. 2008. "Generation of microbubbles for diagnostic and therapeutic applications using a novel device. "J Drug Target., 16(6): 494-501. https://doi.org/10.1080/10611860802184884 DOI: https://doi.org/10.1080/10611860802184884

Pontes, A. C., Caetano, M. N., Magalhaes, N. S. 1999. "Physicochemical characterization and antimicrobial activity of benzathine penicillin G liposomes". S. T. P. Pharma Sci. 9:419-427.

Puig, L. 2014. "Methotrexate: New Therapeutic Approaches". Actas Dermosifiliogr. 6:583-589. Retrived from https://doi.org/10.1016/j.ad.2012.11.017 DOI: https://doi.org/10.1016/j.adengl.2014.05.011

Schaffazick, R. S., Guterres, S. S. 2003. "Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos". Qumica Nova. 26(5):726-737. Retrived from https://doi.org/10.1590/S0100-40422003000500017 DOI: https://doi.org/10.1590/S0100-40422003000500017

Sharma, P., Mukherjee, A., Karunanithi, S., Bal, C., Kumar, R. 2014. "Potencial role of ISF-FDG, PET/CT in patients with fungal infection". Am. J. Roentgenol. 203:180-189. Retrived from https://doi.org/10.2214/AJR.13.11712 DOI: https://doi.org/10.2214/AJR.13.11712

Shen, S., Kuznetsov, I., Abakumova, T., Chelushkin, P., Melnikov, P., Korchagina, A., Bychkov, D., Seregina, F., Bolshov, M., Kabanov, A., Chekhonin, V., Nukolova, N. 2016. "VEGF- and VEGFR2-Targeted Liposomes for Cisplatin Delivery to Glioma Cells". Mol. Pharmaceutics. 13:3712-3723. Retrived from https://doi.org/10.1021/acs.molpharmaceut.6b00519 DOI: https://doi.org/10.1021/acs.molpharmaceut.6b00519

Sorbello, G. S., Bertino, J. R. 2001. "Current understanding of methotrexate pharmacology and efficacy in acute leukemias. Use of newer antifolates in clinical trials". Haematologica. 86(2):121-127. Retrived from https://doi.org/10.3324/%25x

Stride, E. 2009. "Physical principles of micro bubbles for ultrasound imaging and therapy. "cerebrovascular Dis 27 Suppl, 2: 1-13. Retrived from https://doi.org/10.1159/000203122

Stride, E. 2009. "Physical principles of micro bubbles for ultrasound imaging and therapy. "cerebrovascular Dis 27 Supply, 2: 1-13. Retrived from https://doi.org/10.1159/000203122 DOI: https://doi.org/10.1159/000203122

Stride, E., M. Edrisinghe. 2009. "Novel preparation techniques for controlling micro bubble uniformity: a comparison. "Med Biol Eng Comput., 47(8): 883-892. Retrived from https://doi.org/10.1007/s11517-009-0490-8 DOI: https://doi.org/10.1007/s11517-009-0490-8

T Fu, Y Ma, D Fun schilling, HZ li 2009. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng sci; 64:2392-400. Retrived from https://doi.org/10.1016/j.ces.2009.02.022 DOI: https://doi.org/10.1016/j.ces.2009.02.022

TM Squires, SR Quake 2005. Microfluidics: Fluid physics at the nanoliter scale. Rev Mod Phys; 77:977-1026. Retrived from https://doi.org/10.1103/RevModPhys.77.977 DOI: https://doi.org/10.1103/RevModPhys.77.977

Y Hong, F Wang 2007. Flow rate effect on droplet control in a co-flowing microfluidic device. Micro fluid Nano fluidics; 3:341-6. Retrived from https://doi.org/10.1007/s10404-006-0134-3. DOI: https://doi.org/10.1007/s10404-006-0134-3

Downloads

Published

2021-08-31

How to Cite

W. D, A. F., A. G. S, C. A., F. F., dos S., & Santos Junior, A. F. (2021). IMPROVEMENT OF THE MICROFLUIDIC DEVICE FOR THE GENERATION OF MONODISPERSE MICROBUBBLES AS DRUG TRANSPORT SYSTEMS. International Journal of Research -GRANTHAALAYAH, 9(8), 109–124. https://doi.org/10.29121/granthaalayah.v9.i8.2021.4145