TOTAL PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITIES IN CALLUS OF KAEMPFERIA PARVIFLORA

Authors

  • Zuraida Ab Rahman Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang Selangor, Malaysia
  • Ayu Nazreena Othman Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang Selangor, Malaysia
  • Chandradevan AL Machap Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang Selangor, Malaysia
  • Amirah Balqis Amir Amran School of Agriculture Science & Biotechnology, Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200, Besut, Terengganu, Malaysia
  • Nur Najwa Arifah Basiron Biotechnology & Nanotechnology Research Centre, Malaysian Agricultural Research and Development Institute, MARDI HQ, Persiaran MARDI-UPM, 43400 Serdang Selangor, Malaysia

DOI:

https://doi.org/10.29121/granthaalayah.v9.i6.2021.3992

Keywords:

Kaempferia Parviflora, Callus Induction, Phenolic Content, Antioxidant Activities

Abstract

Black ginger or is one useful medicinal plant that urges the need to be cultivated widely. This plant has some previous studies about their rhizomes and callus growth optimization, but their total content and antioxidant activities are not very . This study aims to study the total content and antioxidant activities of callus of K.. This study is to determine the type and concentration of hormone that give the best effect on the growth of callus in culture from different parts (, and basal part) of K.. Different concentrations were tested with medium 2,4-dichlorophenoxyacetic acid (2,4-D) and acid (NAA) in callus cultivation. The highest total content tested in callus is one with 10.00 mg/L 2,4-D from the part of the plant. The highest antioxidant activity is from the part of the plant with 5.00 mg/L 2,4-D.

Downloads

Download data is not yet available.

References

Baluška, F., Volkmann, D. & Menzel, D. (2005). Plant synapses: actin-based domains for cell-to-cell communication. Trends in Plant Science 10(3), 106–111. Retrieved from https://dx.doi.org/10.1016/j.tplants.2005.01.002 10.1016/j.tplants.2005.01.002 DOI: https://doi.org/10.1016/j.tplants.2005.01.002

Britannica, T. (2020). Editors Of Encyclopaedia. Meristem. Encyclopedia Britannica . Retrieved from Https://Www.Britannica.Com/Science/Meristem

Chaâbani, G., Tabart, J., Kevers, C., Dommes, J., Khan, M. I., Zaoui, S., Chebchoub, L., Lachaâl, M. & Karray-Bouraoui, N. (2015). Effects of 2,4-dichlorophenoxyacetic acid combined to 6-Benzylaminopurine on callus induction, total phenolic and ascorbic acid production, and antioxidant activities in leaf tissue cultures of Crataegus azarolus L. var. aronia. Acta Physiologiae Plantarum 37(2), 16. Retrieved from https://dx.doi.org/10.1007/s11738-014-1769-4 10.1007/s11738-014-1769-4 DOI: https://doi.org/10.1007/s11738-014-1769-4

Dias, M. I., Sousa, M. J., Alves, R. C. & Ferreira, I. C. F. R. (2016). Exploring Plant Tissue Culture To Improve The Production Of Phenolic Compounds: A Review Ind Crop Prod. 82, 9–12. DOI: https://doi.org/10.1016/j.indcrop.2015.12.016

El-Nabarawy, M.A., El-Kafafi, S.H., Hamza, M.A. & Omar, M.A. (2015). The effect of some factors on stimulating the growth and production of active substances in Zingiber officinale callus cultures. Annals of Agricultural Sciences 60(1), 1–9. Retrieved from https://dx.doi.org/10.1016/j.aoas.2014.11.020 10.1016/j.aoas.2014.11.020 DOI: https://doi.org/10.1016/j.aoas.2014.11.020

Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E. M. & Halim, M. R. A. (2010). Effect of Different Light Intensities on Total Phenolics and Flavonoids Synthesis and Anti-oxidant Activities in Young Ginger Varieties (Zingiber officinale Roscoe) International Journal of Molecular Sciences 11(10), 3885–3897. Retrieved from https://dx.doi.org/10.3390/ijms11103885 10.3390/ijms11103885 DOI: https://doi.org/10.3390/ijms11103885

Jiménez-Aspee, F., Theoduloz, C., Gómez-Alonso, S., Hermosín-Gutiérrez, I., Reyes, M. & Schmeda-Hirschmann, G. (2018). Polyphenolic profile and antioxidant activity of meristem and leaves from “chagual” (Puya chilensis Mol.), a salad from central Chile. Food Research International 114, 90–96. Retrieved from https://dx.doi.org/10.1016/j.foodres.2018.07.051 10.1016/j.foodres.2018.07.051 DOI: https://doi.org/10.1016/j.foodres.2018.07.051

Johari, M. A. & Khong, H. Y. (2019). Total Phenolic Content and Antioxidant and Antibacterial Activities of Pereskia bleo. Advances in Pharmacological Sciences 2019, 1–4. Retrieved from https://dx.doi.org/10.1155/2019/7428593 10.1155/2019/7428593 DOI: https://doi.org/10.1155/2019/7428593

Johri, M. M. & Mitra, D. (2001). Action Of Plant Hormones. Current Science 199–205.

Krajnc, A. U., Turinek, M. & Ivančič, A. (2013). Morphological And Physiological Changes During Adventitious Root Formation As Affected By Auxin Metabolism: Stimulatory Effect Of Auxin Containing Seaweed Extract Treatment. Agricultura 10(1-2), 17–27.

MERCIER, H., KERBAUY, G.B., SOTTA, B. & MIGINIAC, E. (1997). Effects of NO3-, NH4+ and urea nutrition on endogenous levels of IAA and four cytokinins in two epiphytic bromeliads. Plant, Cell and Environment 20(3), 387–392. Retrieved from https://dx.doi.org/10.1046/j.1365-3040.1997.d01-72.x 10.1046/j.1365-3040.1997.d01-72.x DOI: https://doi.org/10.1046/j.1365-3040.1997.d01-72.x

Pati, P. K., Rath, S. P., Sharma, M., Sood, A. & Ahuja, P. S. (2006). In vitro propagation of rose—a review. Biotechnology Advances 24(1), 94–114. Retrieved from https://dx.doi.org/10.1016/j.biotechadv.2005.07.001 10.1016/j.biotechadv.2005.07.001 DOI: https://doi.org/10.1016/j.biotechadv.2005.07.001

Prathanturarug, S., Apichartbutra, T., Chuakul, W. & Saralamp, P. (2000). Mass Propagation Of Kaempferia Parviflora Wall Ex Baker By In Vitro Regeneration. Journal Of Horticultural Science And Biotechnology 82, 179–183. DOI: https://doi.org/10.1080/14620316.2007.11512217

PRIHANTINI, A. I., SUKITO, A. & TACHIBANA, S. (2018). Production of antioxidant compounds from tissue culture of Artemisia annua. Nusantara Bioscience 10(4), 251–255. Retrieved from https://dx.doi.org/10.13057/nusbiosci/n100409 10.13057/nusbiosci/n100409 DOI: https://doi.org/10.13057/nusbiosci/n100409

Rujjanawate, C., Kanjanapothi, D., Amornlerdpison, D. & Pojanagaroon, S. (2005). Anti-gastric ulcer effect of Kaempferia parviflora. Journal of Ethnopharmacology 102(1), 120–122. Retrieved from https://dx.doi.org/10.1016/j.jep.2005.03.035 10.1016/j.jep.2005.03.035 DOI: https://doi.org/10.1016/j.jep.2005.03.035

Schuster, B. & Retey, J. (1995). The mechanism of action of phenylalanine ammonia-lyase: the role of prosthetic dehydroalanine. Proceedings of the National Academy of Sciences 92(18), 8433–8437. Retrieved from https://dx.doi.org/10.1073/pnas.92.18.8433 10.1073/pnas.92.18.8433 DOI: https://doi.org/10.1073/pnas.92.18.8433

Sumadi, S. (2020). DINAMIKA KONFLIK TOKOH DALAM NOVEL KIDUNG RINDU DI TAPAL BATASKARYA AGUK IRAWAN MN KAJIAN PSIKOLOGI SASTRA. In EDU-KATA ( Vitro Melalui Aplikasi Berbagai Jenis Dan Konsentrasi Sitokinin. Kultivasi , Ed. ). (Vol. 6, pp. 19-26) Universitas Islam Darul Ulum Lamongan Retrieved from https://dx.doi.org/10.52166/kata.v5i1.1789 10.52166/kata.v5i1.1789 DOI: https://doi.org/10.52166/kata.v5i1.1789

Tewtrakul, S., Subhadhirasakul, S. & Kummee, S. (2008). Anti-allergic activity of compounds from Kaempferia parviflora. Journal of Ethnopharmacology 116(1), 191–193. Retrieved from https://dx.doi.org/10.1016/j.jep.2007.10.042 10.1016/j.jep.2007.10.042 DOI: https://doi.org/10.1016/j.jep.2007.10.042

Tewtrakul, S., Subhadhirasakul, S. & Kummee, S. (2008). Anti-allergic activity of compounds from Kaempferia parviflora. Journal of Ethnopharmacology 116(1), 191–193. Retrieved from https://dx.doi.org/10.1016/j.jep.2007.10.042 10.1016/j.jep.2007.10.042 DOI: https://doi.org/10.1016/j.jep.2007.10.042

Vasco, C., Ruales, J. & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chemistry 111(4), 816–823. Retrieved from https://dx.doi.org/10.1016/j.foodchem.2008.04.054 10.1016/j.foodchem.2008.04.054 DOI: https://doi.org/10.1016/j.foodchem.2008.04.054

Vichitphan, S., Vichitphan, K. & Sirikhansaeng, P. (2007). FLAVONOID CONTENT AND ANTIOXIDANT ACTIVITY OF KRACHAI-DUM. (Kaempferia Parviflora) WINE. S2 KMITL Sci. Tech. J, 7(S2), 97–105. Retrieved from Https://Li01.Tci-Thaijo.Org/Index.Php/Cast/Article/View/86819

Yenjai, C., Prasanphen, K., Daodee, S., Wongpanich, V. & Kittakoop, P. (2004). Bioactive flavonoids from Kaempferia parviflora. Fitoterapia 75(1), 89–92. Retrieved from https://dx.doi.org/10.1016/j.fitote.2003.08.017 10.1016/j.fitote.2003.08.017 DOI: https://doi.org/10.1016/j.fitote.2003.08.017

Zuraida, A. R., Nazreena, O. A., Liyana Izzati, K. F. & Aziz, A. (2014). Establishment and Optimization Growth of Shoot Buds-Derived Callus and Suspension Cell Cultures of <i>Kaempferia parviflora</i>. American Journal of Plant Sciences 05(18), 2693–2699. Retrieved from https://dx.doi.org/10.4236/ajps.2014.518284 10.4236/ajps.2014.518284 DOI: https://doi.org/10.4236/ajps.2014.518284

Published

2021-06-30

How to Cite

Rahman, Z. A., Othman, A. N., Machap, C. A., Amran, A. B. A., & Basiron, N. N. A. (2021). TOTAL PHENOLIC CONTENT AND ANTIOXIDANT ACTIVITIES IN CALLUS OF KAEMPFERIA PARVIFLORA. International Journal of Research -GRANTHAALAYAH, 9(6), 77–84. https://doi.org/10.29121/granthaalayah.v9.i6.2021.3992