• Eliane Gonçalves de Jesus Fonseca Universidade Estadual do Centro-Oeste, UNICENTRO
  • Débora Neuls Universidade Estadual do Centro-Oeste, UNICENTRO
  • Ariele Pedroso Universidade Estadual do Centro-Oeste, UNICENTRO
  • Danilo Barbosa Universidade Estadual do Centro-Oeste, UNICENTRO
  • Angela Dubiela Universidade Estadual do Centro-Oeste, UNICENTRO
  • Francisco Cidral
  • Afonso Shiguemi Inoue Salgado
  • Felipe Figueiredo Moreira Universidade Estadual do Centro-Oeste, UNICENTRO
  • Ana Carolina Dorigoni Bini PhD in the Pharmaceutical Sciences Program, Midwest State University, Guarapuava-PR, Brazil
  • Patricia Pacheco Tyski Suckow Universidade Estadual do Centro-Oeste, UNICENTRO
  • Ivo Ilvan Kerppers Universidade Estadual do Centro-Oeste, UNICENTRO
  • Mário César da Silva Pereira Universidade Estadual do Centro-Oeste, UNICENTRO
  • Emerson Carraro Universidade Estadual do Centro-Oeste, UNICENTRO



stroke, 630 nm LED, neurogenesis, motor behavior


Stroke is one of the leading causes of death worldwide; its severity is associated with high death rates and motor, cognitive, and sensory . Several interventions have been proposed in recent years to prevent and primarily treat stroke. LED stands out as one of these interventions; it indicates promising results because it stimulates cellular metabolism, increasing the cellular regenerative potential, and promoting . Thus, the present study evaluated the effects of 630 nm LED in animals submitted to ischemic stroke by analyzing and motor behavior. This was an experimental study with a controlled qualitative and quantitative intervention, with a sample of 30 male Wistar Rattus divided into two groups: a control group and treated group, consisting of 15 animals each. The experimental time points were 3, 7, and 21 days of treatment. All animals were submitted to surgery for the implantation of an electrode and subsequent electrolytic lesion. The quantitative results in the three experimental time points indicate treatment superiority using the 630 nm LED compared to the control group. The findings also showed increased tissue in the treated group at 3, 7, and 21 days of treatment when compared to the control group. Hence, the results suggest that the 630 nm LED guided treatment in the experimental time points of 3, 7, and 21 days was superior to those in the control group, showing animals with increased motor response according to the apprehension test, and improved according to the evaluation.


Download data is not yet available.


Al, M., Ap, H., Jc, G., Ii, K., Silva Pereira, D. & Mc, (2017). A Study Of L-Tryptophan In Depression Caused By Alzheimer's Disease In Experimental Models. Journal Of Physical Education 28(1), 2839.

Altman, K. W., Schaefer, S. D., Yu, G.-P., Hertegard, S., Lundy, D. S., Blumin, J. H., Maronian, N. C., Heman-Ackah, Y. D., Abitbol, J. & Casiano, R. R. (2007). The voice and laryngeal dysfunction in stroke: A report from the Neurolaryngology Subcommittee of the American Academy of Otolaryngology-Head and Neck Surgery. Otolaryngology–Head and Neck Surgery 136(6), 873–881. Retrieved from 10.1016/j.otohns.2007.02.032 DOI:

Andrabi, S. S., Parvez, S. & Tabassum, H. (2017). Progesterone induced neuroprotection in reperfusion promoted mitochondrial dysfunction following focal cerebral ischemia in rats. Disease Models & Mechanisms 10(6), 787–796. Retrieved from 10.1242/dmm.025692 DOI:

Baptista, P. & Andrade, J. P. (2018). Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Frontiers in Neuroanatomy 12, 44. Retrieved from 10.3389/fnana.2018.00044 DOI:

Bertelli, J.A. & Mira, J.C. (1995). The grasping test: a simple behavioral method for objective quantitative assessment of peripheral nerve regeneration in the rat. Journal of Neuroscience Methods 58(1-2), 151–155. Retrieved from 10.1016/0165-0270(94)00169-h DOI:

DeTaboada, L., Ilic, S., Leichliter-Martha, S., Oron, U., Oron, A. & Streeter, J. (2006). Transcranial application of low-energy laser irradiation improves neurological deficits in rats following acute stroke. Lasers in Surgery and Medicine 38(1), 70–73. Retrieved from 10.1002/lsm.20256 DOI:

Gc, P. (1986). Watson The Rat Brain In Stereotaxic Coordinates. New York; Academic, 8:

Henderson, T. A., Morries, L. & Cassano, P. (2015). Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatric Disease and Treatment 11, 2159. Retrieved from 10.2147/ndt.s65809 DOI:

Hi, L., Sw, L., Ng, K., Kj, P., Bt, C., Yi, S. & Hk, S. (2017). Low-Level Light Emitting Diode (Led) Therapy Suppresses Inflammasome Mediated Brain Damage In Experimental Ischemic Stroke. Journal Of Biophotonics 10(11), 1502–1513. DOI:

Hi, L., Sw, L., Ng, K., Kj, P., Bt, C., Yi, S. & Shink, (2017). Low-Level Light Emitting Diode Therapy Promotes Long-Term Functional Recovery After Experimental Stroke In Mice. Journal Of Biophotonics 10(12), 1761–1771. DOI:

Kerppers, I. I., de Lima, C. J., Fernandes, A. B. & Villaverde, A. B. (2015). Effect of light-emitting diode (ʎ 627 nm and 945 nm ʎ) treatment on first intention healing: Immunohistochemical analysis. Lasers in Medical Science 30(1), 397–401. Retrieved from 10.1007/s10103-014-1668-3 DOI:

Liu, Y., Lj, A., Lu, G., Leong, E., Liu, Q., Xh, W., Xl, Z., Tfd, S., Fei, Z., Jiu, T., Hu, X. & Ws, P. (2013). Quantitative Gait Analysis Of Long-Term Locomotion Deficits In Classical Unilateral Striatal Intracerebral Hemorrhage Rat Model. Behavioral Brain Research 257, 166–177. DOI:

Meyer, D. M., Chen, Y. & Zivin, J. A. (2016). Dose-finding study of phototherapy on stroke outcome in a rabbit model of ischemic stroke. Neuroscience Letters 630, 254–258. Retrieved from 10.1016/j.neulet.2016.06.038 DOI:

Naeser, M., Ho, M., Martin, P., Treglia, E., Krengel, M., Hamblin, M. & Baker, E. (2012). Improved Language after Scalp Application of Red/Near-Infrared Light-Emitting Diodes: Pilot Study supporting a New, Noninvasive Treatment for Chronic Aphasia. Procedia - Social and Behavioral Sciences 61(1), 138–139. Retrieved from 10.1016/j.sbspro.2012.10.116 DOI:

Oron, A., Oron, U., Chen, J., Eilam, A., Zhang, C., Sadeh, M., Lampl, Y., Streeter, J., DeTaboada, L. & Chopp, M. (2006). Low-Level Laser Therapy Applied Transcranially to Rats After Induction of Stroke Significantly Reduces Long-Term Neurological Deficits. Stroke 37(10), 2620–2624. Retrieved from 10.1161/01.str.0000242775.14642.b8 DOI:

Sestakova, N., Puzserova, A., Kluknavsky, M. & Bernatova, I. (2013). Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdisciplinary Toxicology 6(3), 126–135. Retrieved from 10.2478/intox-2013-0020 DOI:

Shohayeb, B., Diab, M., Ahmed, M. & Ng, D. C. H. (2018). Factors that influence adult neurogenesis as potential therapy. Translational Neurodegeneration 7(1), 4. Retrieved from 10.1186/s40035-018-0109-9 DOI:

Sompol, P., Xu, Y., Ittarat, W., Daosukho, C. & St Clair, D. (2006). Nf-Kappa B-Associated Mnsod Induction Protects Against Beta-Amyloid-Induced Neuronal Apoptosis. J Mol Neurosc 29(1), 279–88. DOI:

Ta, H. (2016). Multi-Watt Near-Infrared Light Therapy As A Neuroregenerative Treatment For Traumatic Brain Injury. Neural Regeneration Research 11(4), 563. DOI:

Thrift, A. G., Cadilhac, D. A., Thayabaranathan, T., Howard, G., Howard, V. J., Rothwell, P. M. & Donnan, G. A. (2014). Global Stroke Statistics. International Journal of Stroke 9(1), 6–18. Retrieved from 10.1111/ijs.12245 DOI:

Wang, Q., Yang, L. & Wang, Y. (2015). Enhanced Differentiation Of Neural Stem Cells To Neurons And Promotion Of Neurite Outgrowth By Oxygen-Glucose Deprivation. International Journal Of Developmental Neuroscience 43, 50–57. DOI:

Wong-Riley, M. T.T., Liang, H. L., Eells, J. T., Chance, B., Henry, M. M., Buchmann, E., Kane, M. & Whelan, H. T. (2005). Photobiomodulation Directly Benefits Primary Neurons Functionally Inactivated by Toxins. Journal of Biological Chemistry 280(6), 4761–4771. Retrieved from 10.1074/jbc.m409650200 DOI:

Xuan, W., Vatansever, F., Huang, L. & Hamblin, M. R. (2014). Transcranial low-level laser therapy enhances learning, memory, and neuroprogenitor cells after traumatic brain injury in mice. Journal of Biomedical Optics 19(10), 108003. Retrieved from 10.1117/1.jbo.19.10.108003 DOI:

Yang, L., Tucker, D., Dong, Y., Wu, C., Li, Y. & Zhang, Q. (2018). Photobiomodulation Therapy Promotes Neurogenesis By Improving Post-Stroke Local Microenvironment And Stimulating Neuroprogenitor Cells. Experimental Neurology 299, 86–96. DOI:

Yang, Y., Zhao, Q., Zhang, Y., Wu, Q., Jiang, X. & Cheng, G. (2018). Effect Of Mirror Therapy On Recovery Of Stroke Survivors: A Systematic Review And Network Meta-Analysis. Neuroscience 390, 318–336. DOI:



How to Cite

Gonçalves de Jesus Fonseca, E., Neuls, D. ., Pedroso, A. ., Barbosa, D. ., Dubiela, A. ., Cidral, F. ., Shiguemi Inoue Salgado, A. ., Figueiredo Moreira, F. ., Bini, A. C. D., Pacheco Tyski Suckow, P. ., Ilvan Kerppers, I. ., da Silva Pereira , M. C. ., & Carraro, E. . (2021). ANALYSIS OF MOTOR BEHAVIOR AND NEUROPLASTICITY IN AN EXPERIMENTAL MODEL OF HEMIPLEGIA TREATED WITH TRANSCRANIAL THERAPY: TRANSCRANIAL THERAPY IN THE HEMIPLEGIA. International Journal of Research -GRANTHAALAYAH, 9(6), 137–148.

Most read articles by the same author(s)