• Desty Pali Saludung Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia
  • Mesta Limbong Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia
  • Hotmaulina Sihotang Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia



Library Management, Quality Of Education


This research aims to know the function of library management to improve the quality of education in junior high schools in Sanggalangi Subdistrict, North Toraja Regency. The method used in this study is the qualitative approach method. In qualitative approaches, the primary data collection tool is a researcher who acts as a full observer of things that concern the management of libraries relating to the quality of education. The data was obtained through observations, interviews, and documentation directly at junior high school in Sanggalangi Subdistrict, North Toraja Regency. Resource persons in this study are principals, librarians, teachers, and supervisors of junior high school in Sanggalangi Subdistrict. Data validation by triangulation is source triangu- lation, technique and time. The results showed that library management in junior high school in Sanggalangi Subdistrict, North Toraja Regency, in general, has shown good things but experienced various obstacles in the field both     in terms of infrastructure and from the library staff where the librarians do not have library background. The quality of junior high school education in Sanggalangi Subdistrict, North Toraja Regency, is still limited due to limited human resources and facilities that are not optimal, but in some schools, it has improved. It can be seen that there are students in Sanggalangi Subdistrict who have achievements. The use of the library is very influential on the quality of education because through the library, teachers and students can obtain the knowledge and information needed in the learning process.


Download data is not yet available.


(2002). Calidad y tratamiento del agua: Manual de suministros de agua comunitaria. American Water Works Association .

Aazza, M., Ahlafi, H., Moussout, H. & Maghat, H. (2017). Ortho-Nitro-Phenol adsorption onto alumina and surfactant modified alumina: kinetic, isotherm and mechanism. Journal of Environmental Chemical Engineering 5(4), 3418–3428. Retrieved from 10.1016/j.jece.2017.06.051 DOI:

Aazza, M., Ahlafi, H., Moussout, H. & Maghat, H. (2018). Adsorption of metha-nitrophenol onto alumina and HDTMA modified alumina: Kinetic, isotherm and mechanism investigations. Journal of Molecular Liquids 268, 587–597. Retrieved from 10.1016/j.molliq.2018.07.095 DOI:

Adak, A., Bandyopadhyay, M. & Pal, A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and Purification Technology 44(2), 139–144. Retrieved from 10.1016/j.seppur.2005.01.002 DOI:

Ahmad, R. & Kumar, R. (2010). Adsorption of Amaranth Dye onto Alumina Reinforced Polystyrene. CLEAN - Soil, Air, Water 39(1), 74–82. DOI:

Alnajjar, M., Hethnawi, A., Nafie, G., Hassan, A., Vitale, G. & Nassar, N. N. (2019). Silica-alumina composite as an effective adsorbent for the removal of metformin from water. Journal of Environmental Chemical Engineering 7(3), 102994. Retrieved from 10.1016/j.jece.2019.102994 DOI:

An, C., Yang, S., Huang, G., Zhao, S., Zhang, P. & Yao, Y. (2016). Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel 165, 264–271. Retrieved from 10.1016/j.fuel.2015.10.069 DOI:

An, C., Mcbean, E., Huang, G., Yao, Y., Zhang, P., Chen, X. & Li, X. (2016). Multi-soil-layeringsystems for wastewater treatment in small and remote communities. J.Environ. Inform. P 131–144.

Armaghan, M. & Amini, M. M. (2012). Adsorption of diazinon and fenitrothion on nanocrystalline alumina from non-polar solvent. Colloid Journal 74(4), 427–433. Retrieved from 10.1134/s1061933x12040047 DOI:

Ashby, M. F. & Jones, D. R. (2008). Introducción a las propiedades, las aplicaciones y el diseño. Materiales para ingeniería .

Ashfaq, M., Khan, K. N., Rasool, S., Mustafa, G., Saif-Ur-Rehman, M., Nazar, M. F., Sun, Q. & Yu, C.-P. (2016). Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environmental Toxicology and Pharmacology 42, 16–22. Retrieved from 10.1016/j.etap.2015.12.015 DOI:

Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M. C. & Sharma, Y. C. (2017). Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry .

Bansal, R. C. & Goyal, M. (2005). Taylor & Francis Group. In Activated carbon adsorption. USA: Taylor & Francis Group DOI:

Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M., Roy, P. & Tétot, R. (2009). Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry 182(5), 1171–1176. Retrieved from 10.1016/j.jssc.2009.02.006 DOI:

Cardon, D. (2010). Natural dyes, our global heritage of colours. Textile Society of America 6(9).

Chu, T., Nguyen, N., Vu, T., Dao, T., Dinh, L., Nguyen, H. & Pham, T. (2019). Synthesis, Characterization, and Modification of Alumina Nanoparticles for Cationic Dye Removal. Materials 12(3), 450. DOI:

Clemente, A., Rubio, C., Arrieta, E., Lenin, P., Mesa, G. & Antonio, (2013). Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes. Revista Ambiente & Água 8(3), 93–103.

Damià, B. (2003). Emerging pollutants in water analysis. Emerging pollutants in water analysis 22, 0. DOI:

Danis, T. G., Albanis, T. A., Petrakis, D. E. & Pomonis, P. J. (1998). Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water Research 32(2), 295–302. Retrieved from 10.1016/s0043-1354(97)00206-6 DOI:

Dao, T.-H., Vu, T.-Q.-M., Nguyen, N.-T., Pham, T.-T., Nguyen, T.-L., Yusa, S. & Pham, T.-D. (2020). Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. Langmuir . DOI:

Das, A. K., Saha, S., Pal, A. & Maji, S. K. (2009). Surfactant-modified alumina: An efficient adsorbent for malachite green removal from water environment. Journal of Environmental Science and Health, Part A 44(9), 896–905. Retrieved from 10.1080/10934520902958708 DOI:

Daughton, C. G. & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives. Environmental Health Perspectives 107, 907–938 Retrieved from DOI:

Derbalah, A., El-Safty, S. A., Shenashen, M. A. & Abdel Ghany, N. A. (2015). Mesoporous Alumina Nanoparticles as Host Tunnel-like Pores for Removal and Recovery of Insecticides from Environmental Samples. ChemPlusChem 80(7), 1119–1126. Retrieved from 10.1002/cplu.201500098 DOI:

Ebadollahzadeh, H. & Zabihi, M. (2020). Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Materials Chemistry and Physics 248, 122893. Retrieved from 10.1016/j.matchemphys.2020.122893 DOI:

Eckhard, W. (2012). Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling. Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling .

(2014). Estadísticas del agua en México. Comisión Nacional del Agua .

Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T. & Dorer, V. (2014). Development of a Closed Sorption Heat Storage Prototype. Energy Procedia 46, 134–141. Retrieved from 10.1016/j.egypro.2014.01.166 DOI:

Gawade, A. S., Vanjara, A.K. & Sawant, M.R. (2005). Removal of herbicide from water with sodium chloride using surfactant treated alumina for wastewater treatment. Separation and Purification Technology 41(1), 65–71. Retrieved from 10.1016/j.seppur.2004.04.005 DOI:

Gracia-Lor, E., Sancho, J. V. & Hernández, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1218(16), 2264–2275. Retrieved from 10.1016/j.chroma.2011.02.026 DOI:

Hasan, M., Ahmad, A.L. & Hameed, B.H. (2008). Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chemical Engineering Journal 136(2-3), 164–172. Retrieved from 10.1016/j.cej.2007.03.038 DOI:

Huerta, B., Jakimska, A., Llorca, M., Ruhí, A., Margoutidis, G., Acuña, V., Sabater, S., Rodriguez-Mozaz, S. & Barcelò, D. (2015). Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta 132, 373–381. Retrieved from 10.1016/j.talanta.2014.09.017 DOI:

Hughes, S. R., Kay, P. & Brown, L. E. (2013). Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets Collected from River Systems. Environmental Science & Technology 47(2), 661–677. Retrieved from 10.1021/es3030148 DOI:

Jain, P. (1999). Reusable adsorbents for dilute solution separation 3. Sorption dynamics of phenanthrene on surfactant-modified alumina. Separation and Purification Technology 17(1), 21–30. Retrieved from 10.1016/s1383-5866(99)00018-0 DOI:

Joss, A., Siegrist, H. & Ternes, T. A. (2008). Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Science and Technology 57(2), 251–255. Retrieved from 10.2166/wst.2008.825 DOI:

Kannan, C., Sundaram, T. & Palvannan, T. (2008). Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. Journal of Hazardous Materials 157(1), 137–145. Retrieved from 10.1016/j.jhazmat.2007.12.116 DOI:

Karageorgis, A.P, Nikolaidis, N.P, Karamanos, H. & Skoulikidis, N. (2003). Water and sediment quality assessment of the Axios River and its coastal environment. Continental Shelf Research 23(17-19), 1929–1944. Retrieved from 10.1016/j.csr.2003.06.009 DOI:

Khang, D., Liu-Snyder, P., Pareta, R., Lu, J. & Webster, T. J. (2009). Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. Acta Biomaterialia 5(5), 1425–1432. Retrieved from 10.1016/j.actbio.2009.01.031 DOI:

Kordouli, E., Bourikas, K., Lycourghiotis, A. & Kordulis, C. (2015). The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catalysis Today 252, 128–135. Retrieved from 10.1016/j.cattod.2014.09.010 DOI:

Kurtan, U., Amir, Md., Yıldız, A. & Baykal, A. (2016). Synthesis of magnetically recyclable MnFe 2 O 4 @SiO 2 @Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. Applied Surface Science 376, 16–25. Retrieved from 10.1016/j.apsusc.2016.02.120 DOI:

Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J. & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal 44(1), 19–41. Retrieved from 10.1016/j.bej.2008.12.009 DOI:

Liu, W., Zhang, J., Zhang, C. & Ren, L. (2011). Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal 171(2), 431–438. DOI:

Liu, X., Gong, W., Luo, J., Zou, C., Yang, Y. & Yang, S. (2016). Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-composite. Appl. Surf. Sci. p 517–524. DOI:

López, R. & S. Y. (2006). Síntesis metal orgánica de alfa-alúmina a partir de aluminio. Síntesis metal orgánica de alfa-alúmina a partir de aluminio. Tesis magistral .

Mahapatra, A., Mishra, B.G. & Hota, G. (2013). Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites. Ceramics International 39(5), 5443–5451. Retrieved from 10.1016/j.ceramint.2012.12.052 DOI:

Malakootian, M., Mansoorian, H. J., Hosseini, A. & Khanjani, N. (2015). Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Safety and Environmental Protection 96, 125–137. Retrieved from 10.1016/j.psep.2015.05.002 DOI:

Mercier, J. P., Zambelli, G. & Kurz, W. (2002). Introduction to Materials Science . In Introduction to Materials Science. Elsevier DOI:

Metcalf, &. & Eddy, (2003). Wastewater Engineering: Treatment and Reuse (4ta ed.) In Wastewater Engineering: Treatment and Reuse ( ). (E. A. Jones , Ed. ). McGraw-Hill

Mishra, G. & Tripathy, M. (1993). A critical review of the treatments for decolouration of textile effluent. Colourage 40, 35–43.

Nadafi, K., Vosoughi, M., Asadi, A., Borna, M. O. & Shirmardi, M. (2014). Reactive Red 120 dye removal from aqueous solution by adsorption on nano-alumina. Journal of Water Chemistry and Technology 36(3), 125–133. Retrieved from 10.3103/s1063455x14030059 DOI:

Naganoma, T. & Zagawa, Y. (2002). Compos Sci Technol. Compos Sci Technol 62, 1187.

Paul, B., Martens, W. N. & Frost, R. L. (2011). Surface modification of alumina nanofibres for the selective adsorption of alachlor and imazaquin herbicides. Journal of Colloid and Interface Science 360(1), 132–138. Retrieved from 10.1016/j.jcis.2011.04.055 DOI:

Petrie, B., Barden, R. & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research 72, 3–27. Retrieved from 10.1016/j.watres.2014.08.053 DOI:

Pham, T. D., Tran, T. T., Le, V. A., Pham, T. T., Dao, T. H. & Le, T. S. (2019). Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. Journal of Molecular Liquids 110900. DOI:

Pharmaceuticals in drinking-water. World Health Organization. (‎2012)‎. Pharmaceuticals in drinking-water. World Health Organization .

Rane, N. R., Chandanshive, V. V., Khandare, R. V., Gholave, A. R., Yadav, S. R. & Govindwar, S. P. (2014). Green remediation of textile dyes containing wastewater by Ipomoea hederifolia L. RSC Adv. 4, 36623–36632. Retrieved from 10.1039/c4ra06840h DOI:

Renuka, N.K., Shijina, A.V. & Praveen, A.K. (2012). Mesoporous γ-alumina nanoparticles: Synthesis, characterization and dye removal efficiency. Materials Letters 82, 42–44. Retrieved from 10.1016/j.matlet.2012.05.043 DOI:

Richardson, S. D. & Ternes, T. A. (2014). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 86(6), 2813–2848. Retrieved from 10.1021/ac500508t DOI:

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. Elsevier BV 93, 1268–1287 Retrieved from DOI:

Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J.-R., Rodríguez-Mozaz, S. & Sabater, S. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of The Total Environment 540, 250–259. Retrieved from 10.1016/j.scitotenv.2015.06.009 DOI:

Sastre, R., Aza, S. D. & Román, J. S. (2004). Biomateriales.

Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U. & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science 1072–1077. DOI:

Sebastian, K., Michael, M. & Oskar, N. (2017). Polymer Chemistry. Springer. . Polymer Chemistry .

Sen, T. K., Afroze, S. & Ang, H. M. (2011). Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata. Water, Air, & Soil Pollution 218(1-4), 499–515. Retrieved from 10.1007/s11270-010-0663-y DOI:

Smith, W. & Hashemi, J. (2006). Fundamentos de la ciencia e ingeniería de materiales (4th edición. ed.). Mc Graw Hill. Fundamentos de la ciencia e ingeniería de materiales .

Smith, W. (2009). Fundamentos de la ciencia e ingeniería de materiales. Fundamentos de la ciencia e ingeniería de materiales .

Wawrzkiewicz, M., Wiśniewska, M., Gun'ko, V. M. & Zarko, V. I. (2015). Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technology 278, 306–315. Retrieved from 10.1016/j.powtec.2015.03.035 DOI:

Willmott, N., Nelson, G. J. & G. (1998). The biotechnology approach to colour removal from textile effluent. J Soc Dyes Colour 114, 38–41. DOI:

Yedla, S. & Dikshit, A. K. (2005). Removal of Organochlorine Pesticide from Water Environment. Narosa Publushing House. Abatement of Pesticide Pollution: Removal of Organochlorine Pesticide from Water Environment .

Zacarías, V.-H.-.-R., Machuca, M. A. V., Soto, J. L. M., Equihua, J. L. P., Cardona, A. A. V., Calvillo, M. D. L. & González, J. V. (2017). Hidroquímica y contaminantes emergentes en aguas residuales urbano-industriales de Morelia, Michoacán, México. In Hidroquímica y contaminantes emergentes en aguas residuales urbano-industriales de Morelia. (Vol. 33, pp. 221-235) DOI:

Zhang, W., Jiang, F. & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceeding of the International Academy of Ecology and Environmental Sciences 2, 125–144.

Zhou, J., Wang, L., Zhang, Z. & Yu, J. (2013). Facile synthesis of alumina hollow microspheres via trisodium citrate-mediated hydrothermal process and their adsorption performances for p-nitrophenol from aqueous solutions. Journal of Colloid and Interface Science 394, 509–514. DOI:



How to Cite