LIBRARY MANAGEMENT ANALYSIS TO IMPROVE THE QUALITY OF EDUCATION IN JUNIOR HIGH SCHOOL IN SANGGALANGI’ SUB- DISTRICT, NORTH TORAJA REGENCY

Authors

  • Desty Pali Saludung Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia
  • Mesta Limbong Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia
  • Hotmaulina Sihotang Program Pacasarjana Universitas Kristen Indonesia (UKI), Jakarta, Indonesia

DOI:

https://doi.org/10.29121/granthaalayah.v9.i4.2021.3892

Keywords:

Library Management, Quality Of Education

Abstract

This research aims to know the function of library management to improve the quality of education in junior high schools in Sanggalangi Subdistrict, North Toraja Regency. The method used in this study is the qualitative approach method. In qualitative approaches, the primary data collection tool is a researcher who acts as a full observer of things that concern the management of libraries relating to the quality of education. The data was obtained through observations, interviews, and documentation directly at junior high school in Sanggalangi Subdistrict, North Toraja Regency. Resource persons in this study are principals, librarians, teachers, and supervisors of junior high school in Sanggalangi Subdistrict. Data validation by triangulation is source triangu- lation, technique and time. The results showed that library management in junior high school in Sanggalangi Subdistrict, North Toraja Regency, in general, has shown good things but experienced various obstacles in the field both     in terms of infrastructure and from the library staff where the librarians do not have library background. The quality of junior high school education in Sanggalangi Subdistrict, North Toraja Regency, is still limited due to limited human resources and facilities that are not optimal, but in some schools, it has improved. It can be seen that there are students in Sanggalangi Subdistrict who have achievements. The use of the library is very influential on the quality of education because through the library, teachers and students can obtain the knowledge and information needed in the learning process.

Downloads

Download data is not yet available.

References

(2002). Calidad y tratamiento del agua: Manual de suministros de agua comunitaria. American Water Works Association .

Aazza, M., Ahlafi, H., Moussout, H. & Maghat, H. (2017). Ortho-Nitro-Phenol adsorption onto alumina and surfactant modified alumina: kinetic, isotherm and mechanism. Journal of Environmental Chemical Engineering 5(4), 3418–3428. Retrieved from https://dx.doi.org/10.1016/j.jece.2017.06.051 10.1016/j.jece.2017.06.051 DOI: https://doi.org/10.1016/j.jece.2017.06.051

Aazza, M., Ahlafi, H., Moussout, H. & Maghat, H. (2018). Adsorption of metha-nitrophenol onto alumina and HDTMA modified alumina: Kinetic, isotherm and mechanism investigations. Journal of Molecular Liquids 268, 587–597. Retrieved from https://dx.doi.org/10.1016/j.molliq.2018.07.095 10.1016/j.molliq.2018.07.095 DOI: https://doi.org/10.1016/j.molliq.2018.07.095

Adak, A., Bandyopadhyay, M. & Pal, A. (2005). Removal of crystal violet dye from wastewater by surfactant-modified alumina. Separation and Purification Technology 44(2), 139–144. Retrieved from https://dx.doi.org/10.1016/j.seppur.2005.01.002 10.1016/j.seppur.2005.01.002 DOI: https://doi.org/10.1016/j.seppur.2005.01.002

Ahmad, R. & Kumar, R. (2010). Adsorption of Amaranth Dye onto Alumina Reinforced Polystyrene. CLEAN - Soil, Air, Water 39(1), 74–82. DOI: https://doi.org/10.1002/clen.201000125

Alnajjar, M., Hethnawi, A., Nafie, G., Hassan, A., Vitale, G. & Nassar, N. N. (2019). Silica-alumina composite as an effective adsorbent for the removal of metformin from water. Journal of Environmental Chemical Engineering 7(3), 102994. Retrieved from https://dx.doi.org/10.1016/j.jece.2019.102994 10.1016/j.jece.2019.102994 DOI: https://doi.org/10.1016/j.jece.2019.102994

An, C., Yang, S., Huang, G., Zhao, S., Zhang, P. & Yao, Y. (2016). Removal of sulfonated humic acid from aqueous phase by modified coal fly ash waste: Equilibrium and kinetic adsorption studies. Fuel 165, 264–271. Retrieved from https://dx.doi.org/10.1016/j.fuel.2015.10.069 10.1016/j.fuel.2015.10.069 DOI: https://doi.org/10.1016/j.fuel.2015.10.069

An, C., Mcbean, E., Huang, G., Yao, Y., Zhang, P., Chen, X. & Li, X. (2016). Multi-soil-layeringsystems for wastewater treatment in small and remote communities. J.Environ. Inform. P 131–144.

Armaghan, M. & Amini, M. M. (2012). Adsorption of diazinon and fenitrothion on nanocrystalline alumina from non-polar solvent. Colloid Journal 74(4), 427–433. Retrieved from https://dx.doi.org/10.1134/s1061933x12040047 10.1134/s1061933x12040047 DOI: https://doi.org/10.1134/S1061933X12040047

Ashby, M. F. & Jones, D. R. (2008). Introducción a las propiedades, las aplicaciones y el diseño. Materiales para ingeniería .

Ashfaq, M., Khan, K. N., Rasool, S., Mustafa, G., Saif-Ur-Rehman, M., Nazar, M. F., Sun, Q. & Yu, C.-P. (2016). Occurrence and ecological risk assessment of fluoroquinolone antibiotics in hospital waste of Lahore, Pakistan. Environmental Toxicology and Pharmacology 42, 16–22. Retrieved from https://dx.doi.org/10.1016/j.etap.2015.12.015 10.1016/j.etap.2015.12.015 DOI: https://doi.org/10.1016/j.etap.2015.12.015

Banerjee, S., Dubey, S., Gautam, R. K., Chattopadhyaya, M. C. & Sharma, Y. C. (2017). Adsorption characteristics of alumina nanoparticles for the removal of hazardous dye, Orange G from aqueous solutions. Arabian Journal of Chemistry .

Bansal, R. C. & Goyal, M. (2005). Taylor & Francis Group. In Activated carbon adsorption. USA: Taylor & Francis Group DOI: https://doi.org/10.1201/9781420028812

Boumaza, A., Favaro, L., Lédion, J., Sattonnay, G., Brubach, J.B., Berthet, P., Huntz, A.M., Roy, P. & Tétot, R. (2009). Transition alumina phases induced by heat treatment of boehmite: An X-ray diffraction and infrared spectroscopy study. Journal of Solid State Chemistry 182(5), 1171–1176. Retrieved from https://dx.doi.org/10.1016/j.jssc.2009.02.006 10.1016/j.jssc.2009.02.006 DOI: https://doi.org/10.1016/j.jssc.2009.02.006

Cardon, D. (2010). Natural dyes, our global heritage of colours. Textile Society of America 6(9).

Chu, T., Nguyen, N., Vu, T., Dao, T., Dinh, L., Nguyen, H. & Pham, T. (2019). Synthesis, Characterization, and Modification of Alumina Nanoparticles for Cationic Dye Removal. Materials 12(3), 450. DOI: https://doi.org/10.3390/ma12030450

Clemente, A., Rubio, C., Arrieta, E., Lenin, P., Mesa, G. & Antonio, (2013). Procesos de tratamiento de aguas residuales para la eliminación de contaminantes orgánicos emergentes. Revista Ambiente & Água 8(3), 93–103.

Damià, B. (2003). Emerging pollutants in water analysis. Emerging pollutants in water analysis 22, 0. DOI: https://doi.org/10.1016/S0165-9936(03)01106-3

Danis, T. G., Albanis, T. A., Petrakis, D. E. & Pomonis, P. J. (1998). Removal of chlorinated phenols from aqueous solutions by adsorption on alumina pillared clays and mesoporous alumina aluminum phosphates. Water Research 32(2), 295–302. Retrieved from https://dx.doi.org/10.1016/s0043-1354(97)00206-6 10.1016/s0043-1354(97)00206-6 DOI: https://doi.org/10.1016/S0043-1354(97)00206-6

Dao, T.-H., Vu, T.-Q.-M., Nguyen, N.-T., Pham, T.-T., Nguyen, T.-L., Yusa, S. & Pham, T.-D. (2020). Adsorption Characteristics of Synthesized Polyelectrolytes onto Alumina Nanoparticles and their Application in Antibiotic Removal. Langmuir . DOI: https://doi.org/10.1021/acs.langmuir.0c02352

Das, A. K., Saha, S., Pal, A. & Maji, S. K. (2009). Surfactant-modified alumina: An efficient adsorbent for malachite green removal from water environment. Journal of Environmental Science and Health, Part A 44(9), 896–905. Retrieved from https://dx.doi.org/10.1080/10934520902958708 10.1080/10934520902958708 DOI: https://doi.org/10.1080/10934520902958708

Daughton, C. G. & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environmental Health Perspectives. Environmental Health Perspectives 107, 907–938 Retrieved from https://dx.doi.org/10.1289/ehp.99107s6907 DOI: https://doi.org/10.1289/ehp.99107s6907

Derbalah, A., El-Safty, S. A., Shenashen, M. A. & Abdel Ghany, N. A. (2015). Mesoporous Alumina Nanoparticles as Host Tunnel-like Pores for Removal and Recovery of Insecticides from Environmental Samples. ChemPlusChem 80(7), 1119–1126. Retrieved from https://dx.doi.org/10.1002/cplu.201500098 10.1002/cplu.201500098 DOI: https://doi.org/10.1002/cplu.201500098

Ebadollahzadeh, H. & Zabihi, M. (2020). Competitive adsorption of methylene blue and Pb (II) ions on the nano-magnetic activated carbon and alumina. Materials Chemistry and Physics 248, 122893. Retrieved from https://dx.doi.org/10.1016/j.matchemphys.2020.122893 10.1016/j.matchemphys.2020.122893 DOI: https://doi.org/10.1016/j.matchemphys.2020.122893

Eckhard, W. (2012). Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling. Adsorption Technology in Water Treatment Fundamentals, Processes, and Modeling .

(2014). Estadísticas del agua en México. Comisión Nacional del Agua .

Fumey, B., Weber, R., Gantenbein, P., Daguenet-Frick, X., Williamson, T. & Dorer, V. (2014). Development of a Closed Sorption Heat Storage Prototype. Energy Procedia 46, 134–141. Retrieved from https://dx.doi.org/10.1016/j.egypro.2014.01.166 10.1016/j.egypro.2014.01.166 DOI: https://doi.org/10.1016/j.egypro.2014.01.166

Gawade, A. S., Vanjara, A.K. & Sawant, M.R. (2005). Removal of herbicide from water with sodium chloride using surfactant treated alumina for wastewater treatment. Separation and Purification Technology 41(1), 65–71. Retrieved from https://dx.doi.org/10.1016/j.seppur.2004.04.005 10.1016/j.seppur.2004.04.005 DOI: https://doi.org/10.1016/j.seppur.2004.04.005

Gracia-Lor, E., Sancho, J. V. & Hernández, F. (2011). Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 1218(16), 2264–2275. Retrieved from https://dx.doi.org/10.1016/j.chroma.2011.02.026 10.1016/j.chroma.2011.02.026 DOI: https://doi.org/10.1016/j.chroma.2011.02.026

Hasan, M., Ahmad, A.L. & Hameed, B.H. (2008). Adsorption of reactive dye onto cross-linked chitosan/oil palm ash composite beads. Chemical Engineering Journal 136(2-3), 164–172. Retrieved from https://dx.doi.org/10.1016/j.cej.2007.03.038 10.1016/j.cej.2007.03.038 DOI: https://doi.org/10.1016/j.cej.2007.03.038

Huerta, B., Jakimska, A., Llorca, M., Ruhí, A., Margoutidis, G., Acuña, V., Sabater, S., Rodriguez-Mozaz, S. & Barcelò, D. (2015). Development of an extraction and purification method for the determination of multi-class pharmaceuticals and endocrine disruptors in freshwater invertebrates. Talanta 132, 373–381. Retrieved from https://dx.doi.org/10.1016/j.talanta.2014.09.017 10.1016/j.talanta.2014.09.017 DOI: https://doi.org/10.1016/j.talanta.2014.09.017

Hughes, S. R., Kay, P. & Brown, L. E. (2013). Global Synthesis and Critical Evaluation of Pharmaceutical Data Sets Collected from River Systems. Environmental Science & Technology 47(2), 661–677. Retrieved from https://dx.doi.org/10.1021/es3030148 10.1021/es3030148 DOI: https://doi.org/10.1021/es3030148

Jain, P. (1999). Reusable adsorbents for dilute solution separation 3. Sorption dynamics of phenanthrene on surfactant-modified alumina. Separation and Purification Technology 17(1), 21–30. Retrieved from https://dx.doi.org/10.1016/s1383-5866(99)00018-0 10.1016/s1383-5866(99)00018-0 DOI: https://doi.org/10.1016/S1383-5866(99)00018-0

Joss, A., Siegrist, H. & Ternes, T. A. (2008). Are we about to upgrade wastewater treatment for removing organic micropollutants? Water Science and Technology 57(2), 251–255. Retrieved from https://dx.doi.org/10.2166/wst.2008.825 10.2166/wst.2008.825 DOI: https://doi.org/10.2166/wst.2008.825

Kannan, C., Sundaram, T. & Palvannan, T. (2008). Environmentally stable adsorbent of tetrahedral silica and non-tetrahedral alumina for removal and recovery of malachite green dye from aqueous solution. Journal of Hazardous Materials 157(1), 137–145. Retrieved from https://dx.doi.org/10.1016/j.jhazmat.2007.12.116 10.1016/j.jhazmat.2007.12.116 DOI: https://doi.org/10.1016/j.jhazmat.2007.12.116

Karageorgis, A.P, Nikolaidis, N.P, Karamanos, H. & Skoulikidis, N. (2003). Water and sediment quality assessment of the Axios River and its coastal environment. Continental Shelf Research 23(17-19), 1929–1944. Retrieved from https://dx.doi.org/10.1016/j.csr.2003.06.009 10.1016/j.csr.2003.06.009 DOI: https://doi.org/10.1016/j.csr.2003.06.009

Khang, D., Liu-Snyder, P., Pareta, R., Lu, J. & Webster, T. J. (2009). Reduced responses of macrophages on nanometer surface features of altered alumina crystalline phases. Acta Biomaterialia 5(5), 1425–1432. Retrieved from https://dx.doi.org/10.1016/j.actbio.2009.01.031 10.1016/j.actbio.2009.01.031 DOI: https://doi.org/10.1016/j.actbio.2009.01.031

Kordouli, E., Bourikas, K., Lycourghiotis, A. & Kordulis, C. (2015). The mechanism of azo-dyes adsorption on the titanium dioxide surface and their photocatalytic degradation over samples with various anatase/rutile ratios. Catalysis Today 252, 128–135. Retrieved from https://dx.doi.org/10.1016/j.cattod.2014.09.010 10.1016/j.cattod.2014.09.010 DOI: https://doi.org/10.1016/j.cattod.2014.09.010

Kurtan, U., Amir, Md., Yıldız, A. & Baykal, A. (2016). Synthesis of magnetically recyclable MnFe 2 O 4 @SiO 2 @Ag nanocatalyst: Its high catalytic performances for azo dyes and nitro compounds reduction. Applied Surface Science 376, 16–25. Retrieved from https://dx.doi.org/10.1016/j.apsusc.2016.02.120 10.1016/j.apsusc.2016.02.120 DOI: https://doi.org/10.1016/j.apsusc.2016.02.120

Lesmana, S. O., Febriana, N., Soetaredjo, F. E., Sunarso, J. & Ismadji, S. (2009). Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochemical Engineering Journal 44(1), 19–41. Retrieved from https://dx.doi.org/10.1016/j.bej.2008.12.009 10.1016/j.bej.2008.12.009 DOI: https://doi.org/10.1016/j.bej.2008.12.009

Liu, W., Zhang, J., Zhang, C. & Ren, L. (2011). Sorption of norfloxacin by lotus stalk-based activated carbon and iron-doped activated alumina: Mechanisms, isotherms and kinetics. Chemical Engineering Journal 171(2), 431–438. DOI: https://doi.org/10.1016/j.cej.2011.03.099

Liu, X., Gong, W., Luo, J., Zou, C., Yang, Y. & Yang, S. (2016). Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal-composite. Appl. Surf. Sci. p 517–524. DOI: https://doi.org/10.1016/j.apsusc.2015.11.151

López, R. & S. Y. (2006). Síntesis metal orgánica de alfa-alúmina a partir de aluminio. Síntesis metal orgánica de alfa-alúmina a partir de aluminio. Tesis magistral .

Mahapatra, A., Mishra, B.G. & Hota, G. (2013). Adsorptive removal of Congo red dye from wastewater by mixed iron oxide–alumina nanocomposites. Ceramics International 39(5), 5443–5451. Retrieved from https://dx.doi.org/10.1016/j.ceramint.2012.12.052 10.1016/j.ceramint.2012.12.052 DOI: https://doi.org/10.1016/j.ceramint.2012.12.052

Malakootian, M., Mansoorian, H. J., Hosseini, A. & Khanjani, N. (2015). Evaluating the efficacy of alumina/carbon nanotube hybrid adsorbents in removing Azo Reactive Red 198 and Blue 19 dyes from aqueous solutions. Process Safety and Environmental Protection 96, 125–137. Retrieved from https://dx.doi.org/10.1016/j.psep.2015.05.002 10.1016/j.psep.2015.05.002 DOI: https://doi.org/10.1016/j.psep.2015.05.002

Mercier, J. P., Zambelli, G. & Kurz, W. (2002). Introduction to Materials Science . In Introduction to Materials Science. Elsevier DOI: https://doi.org/10.1016/B978-2-84299-286-6.50010-X

Metcalf, &. & Eddy, (2003). Wastewater Engineering: Treatment and Reuse (4ta ed.) In Wastewater Engineering: Treatment and Reuse ( ). (E. A. Jones , Ed. ). McGraw-Hill

Mishra, G. & Tripathy, M. (1993). A critical review of the treatments for decolouration of textile effluent. Colourage 40, 35–43.

Nadafi, K., Vosoughi, M., Asadi, A., Borna, M. O. & Shirmardi, M. (2014). Reactive Red 120 dye removal from aqueous solution by adsorption on nano-alumina. Journal of Water Chemistry and Technology 36(3), 125–133. Retrieved from https://dx.doi.org/10.3103/s1063455x14030059 10.3103/s1063455x14030059 DOI: https://doi.org/10.3103/S1063455X14030059

Naganoma, T. & Zagawa, Y. (2002). Compos Sci Technol. Compos Sci Technol 62, 1187.

Paul, B., Martens, W. N. & Frost, R. L. (2011). Surface modification of alumina nanofibres for the selective adsorption of alachlor and imazaquin herbicides. Journal of Colloid and Interface Science 360(1), 132–138. Retrieved from https://dx.doi.org/10.1016/j.jcis.2011.04.055 10.1016/j.jcis.2011.04.055 DOI: https://doi.org/10.1016/j.jcis.2011.04.055

Petrie, B., Barden, R. & Kasprzyk-Hordern, B. (2015). A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Research 72, 3–27. Retrieved from https://dx.doi.org/10.1016/j.watres.2014.08.053 10.1016/j.watres.2014.08.053 DOI: https://doi.org/10.1016/j.watres.2014.08.053

Pham, T. D., Tran, T. T., Le, V. A., Pham, T. T., Dao, T. H. & Le, T. S. (2019). Adsorption characteristics of molecular oxytetracycline onto alumina particles: The role of surface modification with an anionic surfactant. Journal of Molecular Liquids 110900. DOI: https://doi.org/10.1016/j.molliq.2019.110900

Pharmaceuticals in drinking-water. World Health Organization. (‎2012)‎. Pharmaceuticals in drinking-water. World Health Organization .

Rane, N. R., Chandanshive, V. V., Khandare, R. V., Gholave, A. R., Yadav, S. R. & Govindwar, S. P. (2014). Green remediation of textile dyes containing wastewater by Ipomoea hederifolia L. RSC Adv. 4, 36623–36632. Retrieved from https://dx.doi.org/10.1039/c4ra06840h 10.1039/c4ra06840h DOI: https://doi.org/10.1039/C4RA06840H

Renuka, N.K., Shijina, A.V. & Praveen, A.K. (2012). Mesoporous γ-alumina nanoparticles: Synthesis, characterization and dye removal efficiency. Materials Letters 82, 42–44. Retrieved from https://dx.doi.org/10.1016/j.matlet.2012.05.043 10.1016/j.matlet.2012.05.043 DOI: https://doi.org/10.1016/j.matlet.2012.05.043

Richardson, S. D. & Ternes, T. A. (2014). Water Analysis: Emerging Contaminants and Current Issues. Analytical Chemistry 86(6), 2813–2848. Retrieved from https://dx.doi.org/10.1021/ac500508t 10.1021/ac500508t DOI: https://doi.org/10.1021/ac500508t

Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. Á., Prados-Joya, G. & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere. Elsevier BV 93, 1268–1287 Retrieved from https://dx.doi.org/10.1016/j.chemosphere.2013.07.059 DOI: https://doi.org/10.1016/j.chemosphere.2013.07.059

Ruhí, A., Acuña, V., Barceló, D., Huerta, B., Mor, J.-R., Rodríguez-Mozaz, S. & Sabater, S. (2016). Bioaccumulation and trophic magnification of pharmaceuticals and endocrine disruptors in a Mediterranean river food web. Science of The Total Environment 540, 250–259. Retrieved from https://dx.doi.org/10.1016/j.scitotenv.2015.06.009 10.1016/j.scitotenv.2015.06.009 DOI: https://doi.org/10.1016/j.scitotenv.2015.06.009

Sastre, R., Aza, S. D. & Román, J. S. (2004). Biomateriales.

Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., Von Gunten, U. & Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science 1072–1077. DOI: https://doi.org/10.1126/science.1127291

Sebastian, K., Michael, M. & Oskar, N. (2017). Polymer Chemistry. Springer. . Polymer Chemistry .

Sen, T. K., Afroze, S. & Ang, H. M. (2011). Equilibrium, Kinetics and Mechanism of Removal of Methylene Blue from Aqueous Solution by Adsorption onto Pine Cone Biomass of Pinus radiata. Water, Air, & Soil Pollution 218(1-4), 499–515. Retrieved from https://dx.doi.org/10.1007/s11270-010-0663-y 10.1007/s11270-010-0663-y DOI: https://doi.org/10.1007/s11270-010-0663-y

Smith, W. & Hashemi, J. (2006). Fundamentos de la ciencia e ingeniería de materiales (4th edición. ed.). Mc Graw Hill. Fundamentos de la ciencia e ingeniería de materiales .

Smith, W. (2009). Fundamentos de la ciencia e ingeniería de materiales. Fundamentos de la ciencia e ingeniería de materiales .

Wawrzkiewicz, M., Wiśniewska, M., Gun'ko, V. M. & Zarko, V. I. (2015). Adsorptive removal of acid, reactive and direct dyes from aqueous solutions and wastewater using mixed silica–alumina oxide. Powder Technology 278, 306–315. Retrieved from https://dx.doi.org/10.1016/j.powtec.2015.03.035 10.1016/j.powtec.2015.03.035 DOI: https://doi.org/10.1016/j.powtec.2015.03.035

Willmott, N., Nelson, G. J. & G. (1998). The biotechnology approach to colour removal from textile effluent. J Soc Dyes Colour 114, 38–41. DOI: https://doi.org/10.1111/j.1478-4408.1998.tb01943.x

Yedla, S. & Dikshit, A. K. (2005). Removal of Organochlorine Pesticide from Water Environment. Narosa Publushing House. Abatement of Pesticide Pollution: Removal of Organochlorine Pesticide from Water Environment .

Zacarías, V.-H.-.-R., Machuca, M. A. V., Soto, J. L. M., Equihua, J. L. P., Cardona, A. A. V., Calvillo, M. D. L. & González, J. V. (2017). Hidroquímica y contaminantes emergentes en aguas residuales urbano-industriales de Morelia, Michoacán, México. In Hidroquímica y contaminantes emergentes en aguas residuales urbano-industriales de Morelia. (Vol. 33, pp. 221-235) DOI: https://doi.org/10.20937/RICA.2017.33.02.04

Zhang, W., Jiang, F. & Ou, J. (2011). Global pesticide consumption and pollution: with China as a focus. Proceeding of the International Academy of Ecology and Environmental Sciences 2, 125–144.

Zhou, J., Wang, L., Zhang, Z. & Yu, J. (2013). Facile synthesis of alumina hollow microspheres via trisodium citrate-mediated hydrothermal process and their adsorption performances for p-nitrophenol from aqueous solutions. Journal of Colloid and Interface Science 394, 509–514. DOI: https://doi.org/10.1016/j.jcis.2012.11.050

Published

2021-05-07

How to Cite

Saludung, D. P., Limbong, M., & Sihotang, H. (2021). LIBRARY MANAGEMENT ANALYSIS TO IMPROVE THE QUALITY OF EDUCATION IN JUNIOR HIGH SCHOOL IN SANGGALANGI’ SUB- DISTRICT, NORTH TORAJA REGENCY. International Journal of Research -GRANTHAALAYAH, 9(4), 454–465. https://doi.org/10.29121/granthaalayah.v9.i4.2021.3892