

ISSN (Online): 2350-0530 ISSN (Print): 2394-3629

EXPERIMENTAL STUDY AND PERFORMANCE OF STRENGTH PROPERTIES OF CALCINED KAOLIN AND SILICA FUME PARENTAGE ADDITION

Kamar Elahi ¹, Prof. Harsh Gupta ²

¹ Research scholar, Department of Civil Engineering, Jawaharlal Nehru College of Technology, Rewa (M.P.), India

² Professor, Department of Civil Engineering, Jawaharlal Nehru College of Technology, Rewa (M.P.), India

DOI: https://doi.org/10.29121/granthaalayah.v9.i1.2021.3161

Article Type: Research Article

Article Citation: Kamar Elahi, and Prof. Harsh Gupta. (2021). EXPERIMENTAL STUDY AND PERFORMANCE OF STRENGTH PROPERTIES OF CALCINED KAOLIN AND SILICA FUME PARENTAGE ADDITION. International Journal of Research -GRANTHAALAYAH, 9(1), 216-221. https://doi.org/10.29121/granthaa layah.v9.i1.2021.3161

Received Date: 05 January 2021

Accepted Date: 31 January 2021

Keywords: Silica Fume Compressive Strength Tensile Strength Sand

ABSTRACT

The article is presenting the various type of strength like as compressive and tensile strength during the time of 7 and 28 days. The specimen ore making as 15cm X 15cm X 15cm size for the testing purpose which is depending on the aggregate size. The results are show that strength performances of concrete with durability aspect are improved using Silica fume parentage addition.

1. INTRODUCTION

We are study about the property of test specimen which are having size of 15cm X 15cm X 15cm. The property of composition is generally used such as compressive strength and tensile strength. We are tested Mix (M1, M2, M3, M4, M5, M6, M7 and M8) to observe the suitable mix for construction propose, which is making with the help of Calcined Kaolin, Sand, Aggregate and composition.

2. COMPRESSIVE STRENGTH FORMULA

Compressive Strength = Load / Cross-sectional Area

3. PROCEDURE

First of all, we are constructed the cube with size of 15cm X 15cm X 15cm for testing propose and observing using concrete is completely poured and mould with temperature for the propose of removing the voids after one day cubical mould are removed and the specimen are placed in water tank for the propose of curing. All specimens after time of 7 and 28 days curing, we are tested with testing machine. The load id applied on the specimen 200 Kg/ cm² per minutes gradually upto fails.

4. **PREPARATIONS**

Figure 1: First Specimen

Figure 3: Third Specimen

Figure 5: Fifth Specimen

Figure 7: Seventh Specimen

Figure 2: Second Specimen

Figure 4: Fourth Specimen

Figure 6: Sixth Specimen

Figure 8: Eight Specimen

Experimental Study and Performance of Strength Properties of Calcined Kaolin and Silica Fume Parentage Addition

Figure 9: First to Eight Specimens

5. RESULTS AND DISCUSSION

Table 1: Properties of Cement

Sr. No.	Property	Magnitudes
1	Normal Consistency	40%
2	Initial Setting time	60 minutes
3	Specific Gravity	3.15
4	Fineness of cement	5%

Table 2: Properties of Fine Aggregate

		00 00 0
Sr. No.	Property	Magnitudes
1	Specific Gravity	2.66
2 Fineness modulus		2.56

Table 3: Properties of Silica Fume

F		
Sr. No.	Property	Magnitudes
1	Specific Gravity	2.2
2	Bulk Density	576, (Kg/m ³)
3	Size, (Micron)	0.1
4	Surface Area, (m ² /kg)	20,000
5	Si02	90%-96%
6	Al2O3	0.5% -0.8%

Table 4: Mix

Sr. No.	Material	Quantity in Kg/m ³
1	Cement (OPC)	520
2	Fine Aggregate	460.722
3	Coarse Aggregate	1421.699
4	Water	190.6

Table 5: Results of Compressive Strength during 7 days

Mix	% of Silica	Compressive
	Silica Fume	Strength (Kg/ cm ²)
	added	
M1	0	28.22
M2	5	32.66
M3	10	34.85

Kamar Elahi, and Prof. Harsh Gupta

M4	15	36.58
M5	20	38.55
M6	25	41.66
M7	30	43.82
M8	35	42.91

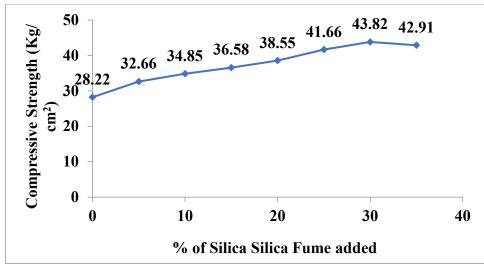
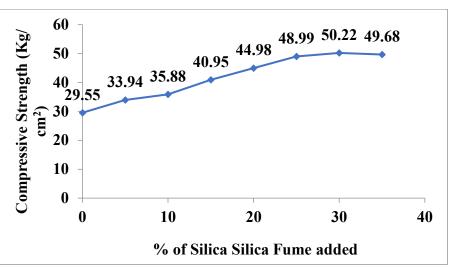
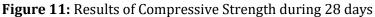
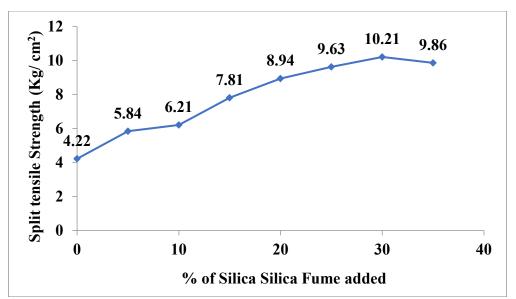
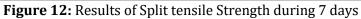




Figure 10: Results of Compressive Strength during 7 days

. Results of compressive strength during			
	Mix	% of Silica	Compressive
		Silica Fume	Strength (Kg/ cm ²)
		added	
	M1	0	29.55
	M2	5	33.94
	M3	10	35.88
	M4	15	40.95
	M5	20	44.98
	M6	25	48.99
	M7	30	50.22
	M8	35	49.68

Table 6: Results of Compressive Strength during 28 days





Experimental Study and Performance of Strength Properties of Calcined Kaolin and Silica Fume Parentage Addition

Mix	% of Silica	Split tensile Strength (Kg/ cm2)
	Silica Fume	
	added	
M1	0	4.22
M2	5	5.84
M3	10	6.21
M4	15	7.81
M5	20	8.94
M6	25	9.63
M7	30	10.21
M8	35	9.86

Table 7: Results of Split tensile Strength during 7 days

Mix	% of Silica	Split tensile
	Silica Fume	Strength (Kg/ cm ²)
	added	
M1	0	5.98
M2	5	6.88
M3	10	7.84
M4	15	8.94
M5	20	9.41
M6	25	10.64
M7	30	12.66
M8	35	11.56

Table 8: Results of Split tensile Strength during 28 days

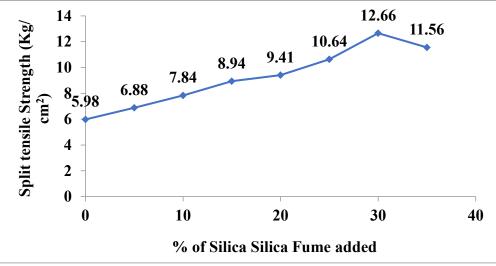


Figure 13: Results of Split tensile Strength during 28 days

6. CONCLUSIONS

We are tested the specimen size of 15cm X 15cm X 15cm to observe the compressive strength (Kg/ cm²) and split tensile strength (Kg/ cm²). The various results are achieved with the help of % of silica fume addition. These specimens are tested using compression testing machine after 7 days curing, after this optimum result are finding out using Mix (M7) which is shown Table 5, and Figure 10. Using of compression testing machine after 28 days curing, after this optimum result are finding out using of Mix (M7) which is shown Table 5, and Figure 17 days curing, after this optimum result are finding out using of Mix (M7) which is shown Table 6 and Figure 11. These specimens are tested using compression testing machine after 7 days curing, after this optimum result are finding out using of Mix (M7) which is shown Table 7, and Figure 12. Using compression testing machine after 28 days curing, after this optimum result are finding out using of Mix (M7) which is shown Table 7.

SOURCES OF FUNDING

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

CONFLICT OF INTEREST

The author have declared that no competing interests exist.

ACKNOWLEDGMENT

None.

REFERENCES

- [1] Khayat, K. H. 1995. "Effects of anti-washout admixtures on fresh concrete properties." ACI Mater. J., pp 164– 171.
- [2] Assaad, J. 2003. "Relationship between washout resistance and rheological properties of high-performance underwater concrete." ACI Mater. J., pp 185–193.
- [3] Ballivy, G. 1996. "High-performance cement grout for underwater crack injection." Proc., 3rd CANMET/ACI Int. Conf. on Performance of Concrete in Marine Environment, V. M. Malhotra, ed., ACI, Farmington Hills, Mich., pp 138–162.