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ABSTRACT 
The emergence of the new coronavirus (SARS-COV-2) is known to 

trigger some common diseases in humans such as pneumonia and diarrhea, 
the search for appropriate therapy combat COVID-19 has been intense and 
exhaustive.  

Motivation/Background: Thus, based on the rational study of drugs, 
a survey of potential ligands that can inhibit the vital protein in virus 
replication, the main protease (Mpro), has been carried out worldwide.  

Method: In this battle, the antiviral Remdesivir, which was created to 
fight the Ebola virus, proved, through the molecular anchorage, to be quite 
effective against its target because it presented affinity energy far superior 
to its co-crystallized ligand. 

Results: In this work, a study was carried out with Remdesivir and its 
derivatives, obtained in a zinc database15, to present a possible alternative, 
based on its structure-affinity, as potential Inhibitors of SARS-COV-2 MPro, 
with affinity energy ranging from -6.3 to -8.2 kcal/mol. 

Conclusions: It was found that both remdesivir and its 
diastereoisomeric derivatives have an affinity with the main protease 
(Mpro), responsible for viral replication, with inhibition capacity and 
possible alternative in its treatment.
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1. INTRODUCTION 
 
The year 2020 will forever be marked as necessary for public health due to the emergence of the new 

coronavirus's pandemic, belonging to a family of viruses called Coronaviridae, known to trigger some common 
diseases in humans such as colds and diarrhea. [1], [2], [3], [4] 

Over the past 20 years, Coronavirus has been responsible for two significant pandemics, severe acute 
respiratory syndrome (SARS)-CoV, 2002, and the Middle East Respiratory Syndrome (MERS)–CoV in 2012. The 
current epidemic began in the seafood and lived animal market; studies have identified that the etiological agent 
would be a new coronavirus (SARS-COV-2). [5] 

In December 2019, the World Health Organization (WHO) was notified of the pneumonia outbreak in the 
People's Republic of China, Hubei province, specifically in the city of Wuhan. [6] The first indications of this viral 
epidemic were reported in this city, where the health system interpreted some of the infected symptoms, diagnosing 
them with pneumonia. [7], [8], [9] 

The symptoms were similar. However, some less common symptoms, such as loss of taste and smell, indicated 
that the diagnosis was not correct enough. These patients were submitted to several tests and interpreted their daily 
lives to seek similarities and finalize the diagnosis. [8], [10], [11], [12]  

Initially, the new viral disease caused by SARS-COV-2 was called "2019 new Coronavirus" or "2019-nCoV". 
Subsequently, the terminology was modified by the WHO to COVID-19, where 'CO' means corona, 'VI' for viruses and 
'D' for the disease. With the spread and increase in the number of countries that confirmed the cases of COVID-19, 
on January 30, 2020, the WHO declared this as a Public Health Emergency of International Importance and then, on 
March 11, 2020, decreed a pandemic of this disease. [5] 

Since then, the virus has evolved exponentially and disorderly ly throughout the planet. The most affected 
continents were Asia, Europe, and the Americas (south and north). [13], [14] Countries like Italy, England, Spain, 
Germany, and France were among the most affected in Europe due to the large tourist flow. The number of deaths 
in these countries combined reached more than 150,000, generating an average rate of 1 death per 500 inhabitants. 
[15], [16] In the U.S. and Brazil, the number of deaths, respectively, stands out. Also, the two countries have about 
340,000 deaths. [4], [17], [18], [19] 

In this viral pandemic scenario decreed by several countries, many universities and major research centers have 
turned their efforts into developing combat tools: vaccines, treatment protocols, technology development, and 
experimental use of new drugs, especially antiviral drugs. 

Regarding antivirals, some studies with results available so far have tested the antivirals lopinavir/ ritonavir, 
remdesivir, and umifenovir. It is emphasized that the remdesivir is still under test in Brazil and still has no 
registration with ANVISA. Umifenavir also has no registration for use in the country. [20] 

Thus, with results still inconclusive, these drugs are allowed to be used only in a context of compassionate use 
or clinical research duly registered in the country. Their routine use is not indicated for the management of patients 
with COVID-19. [20] 

For the treatment of COVID-19, an ideal antiviral agent should target essential proteins involved in the life cycle 
of SARS-CoV-2. [21], [22], [23] Currently, the commonly used protocol for treating this disease is the use of HIV 
protease inhibitors. [24] Several theoretical studies indicate that primary protease (Mpro) provides a highly 
validated pharmacological target for the discovery and design of inhibitors. [25]  

Several researchers have identified potent Mpro inhibitors with the aid of computational techniques and 
molecular modeling. From molecular dynamics and re-docking, it was possible to confirm its efficiency theoretically. 
There are reports of potential Inhibitors of SARS-CoV-2 Mpro from derivatives of natural marine products and 
experimental peptidomimetics α-keto amides. Despite the great potential evidenced by the tests, the biochemical 
behavior in biological systems is often still uncertain due to their toxicity and also because they are not by Lipinski's 
rule of 5. [26], [27]  

Another strategy was the comparison between bioactive compounds and HIV protease inhibitors to evaluate 
their activity against SARS-CoV-2. Docking and molecular dynamics simulations were performed through an in silico 
study. According to the researchers, the inhibitors analyzed presented similar results, classifying potentials for the 
preventive treatment of COVID-19. However, the antiviral Nelfinavir stood out against the others. In addition to 
Nelfinavir, the combination of inhibitors such as Lopinavir/Ritonavir was considered comparable to those of 
Nelfinavir, and the others studied. [28]  
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Remdesivir, another antiviral, was initially developed to treat Ebola and Marburg virus but has been ineffective 
for these infections. [29] Currently, it has authorization from the FDA, experimentally for the treatment of COVID-19 
in the USA, but only in hospitalized patients in severe condition. The release was made by presenting previous 
studies that showed its antiviral activity against the classes of viruses that have an RNA, including SARS-CoV-1 
because it is an analog of adenosine, which is incorporated into the nascent chains of viral RNA, which can lead to 
premature interruption of the final chains of this RNA. [30] 

In this perspective, computational techniques have enhanced research in this field besides providing the 
optimization of methods and protocols. Molecular modeling has emerged as an indispensable tool for the beginning 
of the development of bioactive compounds and biochemical compatibility tests. [31], [32] These computational 
experiments are performed to achieve the best interaction condition, avoid unnecessary tests, and provide time 
savings of reagents. [33] 

Therefore, molecular simulations have been assisting in developing new drugs for more than 25 years. 
Molecular modeling is conceptualized as a combination of theoretical and computational techniques for the 
structural improvement of molecules and to question their behavior. [34], [35] The alignment between molecular 
modeling and simulation plays an increasingly important role in developing products and processes to overcome 
various contemporary societal challenges in health, energy, food, water treatment, and environmental protection. 
[36]  

This work aims to study in silico of Remdesivir and its constitutional and diastereoisomeric derivatives to verify 
its interaction with Mpro protease and be based on new studies, with potential inhibitors for SARS-COV-2 and 
treatment of COVID-19. 

 
2. MATERIALS AND METHODS  
 
Molecular coupling simulations were performed from the screening of 17 structures derived from the antiviral 

remdesivir in 3D, selected from the ZINC15 repository (https://zinc15.docking.org/substances/home/), [37] Fig. 1., 
where they were prepared and optimized in the Software Autodock4 tools (1.5.6), [38] as well as the target protein.  

The code used was Autodock vina, with its Lamarckian genetic algorithm (AG) in combination with grid-based 
affinity energy, [39] with the anchor region according to the synthetic binding found co-crystallized in the protein 
(N3). The main protease protein was obtained from the RCSB Protein Data Bank (PDB ID: 6LU7). [40] Its structure 
was archived in the Protein Database with a resolution of 2.16 Å, determined from x-ray diffraction, classified as 
viral protein. The rule of 5 Lipinski, [41] RMDS of up to 2.0 Å. [42] and affinity energy greater than -7.0 kcal/mol was 
used as an exclusion factor. The most favorable ones were represented by the lowest free binding energy (ΔG) [43]. 
Discovery Studio [44] conducted interaction 3D/2D visualization analysis studies, and Poseview was added. [45], 
[46] 

 

  
  

 

 
 

   

REMDESIVIR               ZINC001772620193         ZINC001772647545           ZINC001772635718         ZINC001772620192 

ZINC000166442021        ZINC001772610688                    ZINC000103270207             ZINC000103262203            ZINC000166442088 
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Figure 1: Structure of binders used in the 2D study. 
 

3. RESULTS AND DISCUSSIONS  
 
From the molecular docking, it was verified that all 16 ligands and the control (Remdesivir) selected (in yellow) 

interacted with amino acid residues from the same region of the co-crystallized ligand (N3, in green), as seen in 
Figure 2. 

  

 
Figure 2: Binders (yellow) anchoring in the same region as the co-crystallized synthetic binder, N3 (green), 

obtained by Discovery studio. [44] 
 

However, by exclusion, only seven ligands were the most conducive to subsequent analysis based on their 
affinity energy from the mentioned methodology. They meant standard deviation values of interactions (RMSD), [42] 
as shown in Figure 3.  

 
 
 

ZINC000103270230       ZINC001772610689        ZINC001772635410       ZINC000103262205             ZINC000103270228 
 

ZINC000103270205                  ZINC001772647544                        
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Figure 3: Graph showing the acceptability region of the main ligands. 

 
As seen in Table 1, to facilitate the discussion, it was decided to rename the ligand codes from Zinc15 repository 

to RemD-1 to RemD-6, as derivatives of Remdesivir (RemD-0). The docking power scale was also presented. Except 
for RemD-0 (with nine poses), the other ligands gave ten poses, with calculated energy affinity variations from -8.2 
to 6.6 kcal/mol. However, the discussion was based on Remd-1 ligands' structure to RemD-6 because they present 
structures with constitutional alterations and distinct configurations, compared to Remdesivir (RemD-0) and are 
those with higher and lower energy, respectively. 

 
Table 1: Main binders selected from their structures, affinity energies, RMDS and poses. 

Docking score (Kcal/mol) Code ZINC15 RMDS Poses 
-8.2 a -7.6 ZINC001772620193 (RemD-1) 1.5 10 
-8.0 a -6.6 ZINC001772647545 (RemD-2) 1.2 10 
-7.9 a -6.9 ZINC001772635718 (RemD-3) 1.4 10 
-7.8 a -6.9 REMDESIVIR (RemD-0) 1.8 9 
-7.5 a -6.9 ZINC001772620192 (RemD-4) 1.6 10 
-7.2 a -6.5 ZINC001772610688 (RemD-5) 1.8 10 
-7.1 a -6.6 ZINC000103270207 (RemD-6) 1.6 10 

 
Of these ligands, amino acid residues similar to the protein domain region were analyzed. Each protein 

protomer was composed of three domains: domain I with residues 8-101, domain II with residues 102-184, in the 
topology, presented an antiparallel structure of β-barrel. In domain III, with the residues 201-303, it showed five α-
helix arranged in a globular cluster largely antiparallel, connected to domain II through an extended loop region with 
the residues 185-200. [47], [48]  

To prove the efficiency of the docking, in the re-docking, it was possible to calculate an average distance 
variation (VDM) of 0.65 Å (made from the distance of all interaction (Å)/number of interaction between the N3 
ligand and the protein) in its six residues, which were: Gly143, Hist163, His41, Pro168, Hist172, and Met49, 
presented in Table 2. In the Remd-1 antiviral, this calculated variation was lower, of 0.38 Å, which justifies its more 
excellent stability between the formed complex and higher affinity energy (-8.2kcal/mol) compared to the co-
crystallized ligand, which reached a maximum of -6.0kcal/mol. Figure 4 shows the main complexes' two-dimensional 
diagrams: from the RemD-0 complex to the RemD-6 complex. The targeted connections between the nearest 
receptor-binding were drawn as dashed lines, and the residues of interactive and binding proteins are visualized as 
structural diagrams. It is also verified that the hydrophobic contacts were represented more indirectly through 
sections highlighting the ligand's hydrophobic parts and its contact amino acid. [45], [46]  
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A highlight should be given to the derivative RemD-1 (-8.2kcal/mol), which presented higher affinity energy 
about the other binders, having in its structure a tetrahydrofuran ring in the ester part, to the branched and aliphatic 
chain (2'-ethyl-butyl) of RemD-0, which obtained a gain of approximately 5% stability in the formation of the 
complex. The aromatic substructure (aminopyrrole triazil) of RemD-0 is located in the plane of the molecule, forming 
a hydrogen bond with Thr190, while this same region of RemD-1 is forward, interacting with two residues of the 
active site, Glu166, and Thr26, which have a polar nature, generating a greater affinity with protease. While in RemD-
6, stability is further reduced when the aliphatic chain is with fewer carbons, in the sester sester-butylate part, which 
decays its affinity energy in the receptor-ligand complex by approximately 9%. This can be justified because 
introducing a ring of a system changes the conformation and increases the analog's overall size. [49] 

Generally, the effect of these changes on the analog's potency and activity is not predictable. [50] However, the 
increase in length may help fill a hydrophobic/hydrophilic aperture at the target site, strengthening the drug's 
binding to the target. [51] Remd-2 (-8.0kcal/mol) and RemD-3 (-7.9kcal/mol) diastereoisomers have a higher 
binding affinity than RemD-0 (-7.8kcal/mol) because they are intrinsically interacting with the protease domain. In 
addition to better accommodation in the hydrophilic cracks caused by the increase of entropy (∆S) of the system 
from the desolvation (release of water molecules), when two apolar atoms interact, that is, the approximation of 
hydrophobic surfaces promoting disorganization of the solvation layer favoring interaction, also known as Van der 
Waals interactions. [52], [53] These hydrophobic interactions play an essential role in the stabilization of receptor-
ligand complexes due to the remarkable hydrophobic characteristics of certain groups or fragments present in 
bioactive molecules or protein structures. [54]  

Compared to RemD-1 (-8.0kcal/mol), which has an interaction in protease domains, it generates three hydrogen 
bonds in the residues: Ser144, Cys145, and His166, which produces greater stability to the formed complex. Also 
observed are three carbon-hydrogen bonds in the residues: Thr26, Gly143, and Glu166. In the hydrophobic region 
of the protein, the ligand showed interaction with Met165 (pi-sulfur), Gln189 (unfavorable positive-positive type 
bond), His41 (Pi-Pi type), and Met49 (Pi-Alkyl type). The diastereoisomer of RemD-1, RemD-4 (-7.6kcal/mol), did 
not present the same interactions in the simulation because its aromatic region (aminopyrrole triazil) was found in 
the plane of the molecule, which in some way gave lower energy in the formation of the complex. This behavior is 
also seen in RemD-5 (-7,2kcal/mol), which has the ester part in the molecule plane, which causes a reduction in its 
affinity energy, against the RemD-2 (-8.0kcal/mol) that is behind. This analysis can be seen in Figure 5. 

 
Table 2: Comparison of distances between residues/ligand. 

Mpro protease reside 
recorded by simulations 

Protein 
domain[48] 

Distance from ligand (Å) 
Native PDB (average 0.65 Å) Molecular anchorage result 

(average 0.38 Å) 
ligand 

N3 
Re-

docking 
Difference 

between docking 
RemD-

1 
Difference between 

docking 
Thr26 S1    3.3 Å  
His41 4.3 Å 4.5 Å 0.2 Å 4.3 Å 0.0 Å 
Met49 4.7 Å 5.5 Å  0.8 Å 4.6 Å 0.1 Å 

Asn142 S2 4.1 Å     
Gly143 2.9 Å 2.4 Å 0.5 Å 3.3 Å 0.4 Å 
Ser144    2.6 Å  
Cys145  3.4 Å  3.4 Å 0.0 Å 
Hist163 2.4 Å 2.0 Å 0.4 Å 2.9 Å 0.5 Å 
Met165 4.6 Å   5.7 Å 1.1 Å 
Glu166 2.8 Å   3.4 Å 0.6 Å 
Pro168 4.9 Å 5.4 Å 0.5 Å   
Hist172 3.7 Å 5.2 Å 1.5 Å   
Gln189 S3    4.3 Å  

  
 
 

https://www.granthaalayahpublication.org/journals/index.php/Granthaalayah/


Study of The Inhibition Potential of Remdesivir Derivatives on Mpro of Sars-Cov-2 
 

International Journal of Research -GRANTHAALAYAH                                                                                                                                                                  170               

 
Figure 4: Two-dimensional diagrams of the main complexes analyzed in docking 

 

  
Figure 5: (a) representation of RemD-1 in 3D with the approximation of the residues and their domain (S1-S3) 

[48]; (b) representation of RemD-1 in 2D with distances (Å) and type of interaction, performed by discovery studio 
software. [44] 

 
4. CONCLUSIONS AND RECOMMENDATIONS  
 
It was found that both remdesivir and its diastereoisomeric derivatives have an affinity with the main protease 

(Mpro), responsible for viral replication, with inhibition capacity and possible alternative in its treatment because 
they present minimal cytotoxic effects, characteristic of promising therapeutic agents and are by Lipinski's protocols.  
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These findings may contribute significantly to future studies and research to support the possible inclusion of 
remdesivir and its derivatives in new experimental protocols for a drug therapy capable of combating SARS-CoV-2 
since COVID-19 causes acute and severe respiratory problems and has led the world population to mass 
hospitalization and death. 

However, it should be clear that the computational assays' data are indicative only and should respect the results 
of in vitro and in vivo studies, as these are directly related to reactive compounds and biological systems. It is also 
essential to state that these studies are computational and are often probabilities based on quantum mechanics. 
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