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ABSTRACT 
In many studies, we may raise the question of whether relative 

amounts of particular variables are positively or negatively associated, but 
investigations specifically focusing upon this issue seem hard to find.  
Previously, we reported some general rules for associations between 
relative amounts of positive scale variables. The main research question of 
the present work was: How are correlations between percentages of the 
same sum brought about? One particular feature of such correlations 
seemed to be that distributions (ranges) of the variables were crucial for 
obtaining either positive or negative correlations, and for their strength, 
suggesting the name Distribution Dependent Correlations (DDC). Certainly, 
such correlations might cause bias. However, previous findings raise the 
question of whether DDC might have a physiological relevance as well.  In 
the current work, we extend and systematize theoretical considerations, 
and show results of computer experiments to test the hypotheses. Finally, 
we briefly mention a couple of examples from physiology. The results seem 
to support the idea that true, within-person distributions of the variables 
are crucial for obtaining positive or negative correlations between their 
relative amounts, raising the question of whether evolution might utilize 
DDC to regulate metabolism.

  
Definitions and Abbreviations 
Variability:  the width or spread of a distribution, measured e.g. by the range and standard deviation. 
Distribution: graph showing the frequency distribution of a variable within a particular range. In this article, 

we also use distribution when referring to a particular range, a – b, on the scale. 
Uniform distribution: every value within the range is equally likely. In this article, we may write “Distribution 

was from a to b”, or “Distributions of A, B, and C were a – b, c – d, and e - f, respectively”.  
“Low–number variables” have very low numbers relative to “high-number variables”. 
WBC = White Blood Cells; N = segmented neutrophil leukocytes; L = Lymphocytes; M = Monocytes; E = 

Eosinophil leukocytes; B = Basophil leukocytes 
 

1. INTRODUCTION 
 
In various studies, we may raise the question of whether relative amounts of particular variables are positively 

or negatively associated. However, investigations specifically focusing upon this issue seem hard to find, in a 
literature search. The apparent lack of interest might possibly relate to a methodological concern arising when 
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correlating percentages of the same sum, since significant associations could be obtained mathematically, without 
e.g. having any biological implications (Pearson, 1897). On the other hand, it may not always be apparent whether 
positive (negative) associations between percentages of the same sum should be rejected as correlation bias, or 
rather be considered to have biological relevance. In this context, we previously reported that relative amounts of 
e.g. particular body fatty acids can be positively or negatively associated as a consequence of their particular 
concentration distributions (range/variability/skewness), suggesting the name Distribution Dependent Correlations, 
DDC (Høstmark and Haug, 2018; 2019a, b; 2020a-c). Furthermore, we raised the question of whether evolution 
might utilize such correlations as a regulatory mechanism (Høstmark and Haug, 2018; 2020a, c). If so, we should 
find examples in physiology. Furthermore, since DDC rules are general, they should apply to any unit system in 
nature. Previously we suggested two general DDC rules (Høstmark and Haug 2019c):  

1) If S is the sum of 3 positive scale variables (S = A + B + C), where A and B have low numbers and low variability 
relative to C, then we might expect a positive %A vs. %B association, and a negative %C vs. %A(%B) 
association.  A decrease (increase) in the variability (range) of A and/or B should improve (make poorer) the 
%A vs. %B association. In contrast, a narrowing (broadening) of the C range should make poorer (improve) 
the %A vs. %B association.  

2) If A and/or B have very high numbers relative to C, then we should expect a negative %A vs. %B association, 
irrespective of the ranges of A and B. 

 
The aim of the present work was to further reason about and discuss how Distribution Dependent Correlations 

are brought about, carry out computer experiments to test hypotheses, and briefly present a couple of examples 
related to physiology.  

 
2. MATERIALS AND METHODS  
 
Previously (Høstmark and Haug, 2020b), the association between relative amount of arachidonic acid (20:4 n6) 

and percentage of e.g. eicosapentaenoic acid (EPA, 20:5 n3) was investigated, in chicken lipids. From histograms, the 
physiological concentration distributions (g/kg wet weight) for the fatty acids were determined. Next the sum (S, 
g/kg wet weight) of all fatty acids was computed, as well as and the remaining sum (R) when omitting the couple of 
fatty acids under investigation, thereby apparently obtaining 3 positive scale variables. With these variables, and 
with surrogate random number variables, generated with the true concentration distributions, computer analyses 
as described in detail below, were carried out. For the purpose of the present work, the three positive scale variables 
were named A, B, and C. Previous analyses (Høstmark and Haug, 2020a, b) demonstrated that correlations between 
e.g. %A and %B depended upon the particular distribution (range) of each of the variables involved. Thus, we 
obtained similar correlation outcomes using the true (measured) values, or random numbers, if the ranges were like 
the measured ones.  

A major part of the present work consists of computer experiments using random numbers to explore further, 
how distributions of A, B, and C might influence the association between their relative amounts.  Thus, A + B + C = S. 
Dependency between percentages is shown by the equation %A + %B + %C = 100. Using random numbers for A, B, 
and C, each of which sampled within defined ranges; we studied histograms, scatterplots, and correlations 
(Spearman’s rho). Computer experiments were performed, to study how alterations in the ranges of the random 
numbers might change associations between %A, %B, and %C.  Several repeats were carried out, with new sets of 
random numbers (n = 200 each time); the general outcome was always the same, but corresponding correlation 
coefficients and scatterplots varied slightly.  

We present the results mainly as scatterplots with correlation coefficients. In most of the computer experiments, 
the random numbers had uniform distribution, but random numbers with normal distribution were used as well, 
however giving qualitatively similar results.  We used SPSS 25.0 for the analyses, and for making figures. The 
significance level was set at p < 0.05. We present further details under Results and Discussions. 
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3. RESULTS AND DISCUSSIONS  
 
We first consider how Distribution Dependent Correlations might arise, using two lines of reasoning: 1) utilizing 

the equation of a straight line, and 2) applying the relationship between sum (S) of all variables and their fractions 
(percentages) of S.   

 
 UTILIZING THE EQUATION OF A STRAIGHT LINE 

 
3.1.1. THEORETICAL CONSIDERATIONS 
 
If S is the sum of many positive scale variables, S = A + B + C + …, we may simplify to S = A + B + R, i.e. %A + %B 

+ %R = 100, or %B = -%A + (100 -%R), where R is the sum of all variables, except A and B. This equation seems to 
resemble the equation of a straight line, however involving percentage amounts of three unknown variables (A, B, 
R), each of which with a defined distribution. Accordingly, it is hard to know whether there might be an association 
between relative amounts of e.g. A and B.  However, in two particular conditions we may further simplify the 
equation by approximations, apparently to involve two variables only. This may be achieved: 1) if the expression 
(100 - %R) approaches zero, or 2):  if %R approaches zero.   

 
3.1.1.1. % R APPROACHING 100 
 
If %R consists of high values (close to 100) and the low-number, corresponding values of %A and %R are such 

that (100 - %R) > %A, then the equation appears to approach %B = %A, showing a linear positive association 
between %A and %B. The requirement (100 - %R) > %A is indeed satisfied, sine the remaining value when 
calculating (100 - %R) would have to be divided between %A and %B. For example, suppose that %R could reach 
99%, then the remaining percent would have to be divided between %A and %B. Hence, the slope of the %A vs. %B 
regression line must be positive.  Accordingly, with high %R values relative to A and B percentages, we might expect 
a positive %B vs. %A association.  In this context, we should keep in mind that all variables in the denominator (S) 
are still there when dealing with percentages of S. Nevertheless, the above simplified relationship between the 
percentages seemed to work well under this “extreme” condition, as verified by computer experiments, using 
random numbers (vide infra). Conceivably, with very high R-values relative to A (B), a small increase (decrease) in 
%R, should be accompanied by a compensatory decrease (increase) in %A and %B. Furthermore, it follows from the 
above reasoning that any change in the ranges of A, B, or R should influence the magnitude of %R, thereby changing 
the %A vs. %B association. Thus, if the R-range is moved towards higher (lower) values, then the expression (100 - 
%R) should move closer to (away from) zero, thereby improving (making poorer) the %A vs. %B association. 
Additionally, since the equation %A + %B + %R = 100 is valid, also a change of A (B) ranges towards lower (higher) 
values should improve (make poorer) the correlation between %A and %B, accompanied by increased (decreased) 
values of %R, caused by altering the A (B) ranges. 

Above we reasoned that we should expect a positive association between %B and %A, if the expression (100 - 
%R) approached zero. However, in this case it is inappropriate to approximate the expression to %B = %A, like Y = 
X. In the latter case, both the abscissa and the ordinate may have any value on the scale, and the Y vs. X graph would 
have slope = 1. In contrast to this, %B and %A – values are limited by the B and A ranges, respectively. A more general 
approximation would be: 

 
%B(p - q)  = [(%Bmax - %Bmin)/(%Amax - %Amin)]*%A (r - s) + z 

            
The subscript parentheses indicate ranges of %A and %B, and z = 100 - %R. Thus, z becomes increasingly small 

as %R increases. The approximated slope value would be:  
 

(%Bmax - %Bmin)/(%Amax - %Amin) 
                                                                                              
The slope should approach +1, only if ranges of A and B are equal.  Additionally, the slope value computed 

manually based on maximum and minimum values of %A and %B may deviate somewhat from the slope made by 
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the computer, especially with poor scatterplots. To improve readability in the mathematical expressions below, we 
omit indication of ranges.  
 

3.1.1.2.  % R APPROACHING ZERO 
 
Above we reasoned that there should be a positive %B vs. %A association if (100 - %R) > %A. Obviously, this 

requirement is present also with low values of %R, raising the question of how to explain that the correlation 
between A and B percentages in this case must be negative. The reason is that, when %R is close to zero, the equation 
approaches: % B = - % A + 100, or %A + %B = 100. Hence, the A and B percentages of S must vary inversely.  

 
3.1.2. COMPUTER EXPERIMENTS TO TEST THE HYPOTHESES 
 
In most of the calculations below, we used random numbers with uniform (rectangular) distribution; however, 

the correlation outcomes were similar with uniform and normal distribution of the random numbers (results not 
shown), provided that ranges were equal.  

 
3.1.2.1. %R APPROACHING 100 
 
To obtain high %R values relative to %A(%B), the following ranges were arbitrarily chosen: A 0.1 - 0.2; B 0.3-

0.5; R 2 – 20. With these ranges, we generated 200 uniformly distributed random numbers. As shown in Fig. 1 (left 
panel), %A correlated positively with %B (Spearman’s rho = 0.872; %R vs. %A (%B): rho = -0.933 (- 0.986), p < 0.001 
for all. Quartiles of the %A, %B, and %R distributions were 0.9, 1.4, 2.3; 2.5, 3.4, 5.8; and 92.0, 95.3, 96.6%, respectively, 
i.e. showing very high %R values relative to %A(%B). Equation of the regression line (SE in parentheses) was %B = 
2.45 (0.08) *%A + 0.34(0.16). The slope value estimated manually applying the above formula was 2.30. Skewness 
of %A, %B, and %R histograms were 1.46, 1.41, and -1.39, respectively. Thus, percentages of the low-number 
variables (A, B) were positively skewed, and percentage of the high-number variable (R) was negatively skewed 
(further commented below).  

 

   
Figure 1:  Association between %A and %B, as influenced by changing the ranges of A, B, and R. The figure 

relates   to the equation %A + %B + %R = 100, see text. Uniformly distributed random numbers (n = 200) were 
used. Left panel; ranges were A 0.1 – 0.2; B 0.3 – 0.5; R 2 – 20; %A vs. %B (Spearman’s rho = 0.872, p < 0.001). 

Middle panel: A 0.10 – 0.11; B 0.30 – 0.33; R 2 – 30; %A vs. %B: rho = 0.995, p <0.001. Right panel: A 0.10 – 0.5; B 
0.2 -0.7; R 2 – 8; %A vs. %B: rho = 0.362, p < 0.001. 

 
To test whether the %A vs. %B association improves by moving the %R distribution towards higher values, we 

need to increase %R This was achieved through narrowing ranges of A(B) towards the lower limit, and broadening 
the R range towards higher values, e.g.  A 0.10 – 0.11; B 0.30 – 0.33; R 2 – 30.  As anticipated, the %A vs. %B 
association did improve, as judged from the scatterplot (Fig. 1, middle panel) and correlation coefficient (%B vs. %A: 
rho = 0.998; %R vs. %A (%B): rho = -0.998 (- 1.000), p < 0.001 for all. Equation of the regression line (SE in 
parentheses) had changed to: %B = 2.98 (0.02) *%A + 0.02(0.02). Slope computed manually by the above 
approximation was 3.10. Quartiles of the %A, %B, and %R distributions were 0.5, 0.6, 1.0; 1.3, 1.7, 3.2; and 95.8, 97.7, 
98.2%, respectively. Thus, the %R distribution had moved towards higher values, in line with the improved 
association between %A and %B. Conceivably, the %A and %B distributions had moved towards lower values. 
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Skewness (SE) of %A, %B, and %R histograms had increased, being 2.19 (0.17), 2.19 (0.17), and -2.19 (0.17), 
respectively, as compared with 1.46, 1.41, and -1.39, before narrowing.  

To test whether the positive %A vs. %B association will be poorer by moving the %R distribution towards lower 
values, we need to decrease %R. This was achieved by arbitrarily changing ranges to be A 0.10 – 0.5; B 0.2 -0.7; R 2 
– 8.  As shown in Fig. 1, right panel, the scatterplot for the %A vs %B association became poorer, as also verified by 
the correlation coefficient: rho = 0.362 (p<0.001) for the %A vs. %B association. Correlation between %R and %A 
(%B): rho = -0.773 (- 0.844), p < 0.001 for all. Quartiles of the %A, %B, and %R distributions were: 3.4, 5.1, 7.3; 5.7, 
7.9, 10.4; 82.6, 87.5, 89.6%. Thus, the %R distribution had moved towards lower values, in keeping with the observed 
poorer %A vs. %B correlation. Accordingly, the %A and %B distributions had moved towards higher values. 
Skewness (SE) of %A, %B, and %R histograms had changed to 0.83 (0.17), 0.94 (0.17), and -0.96 (0.17), respectively, 
showing attenuated skewness of the distributions of the percentages. Equation of the regression line was %B = 0.60 
(0.08) *%A + 5.10 (0.53).  With this poor scatterplot, we observed a large difference concerning the computer- 
calculated slope value of 0.60, and the one obtained manually by the above-approximated formula, i.e. 1.23.  We 
previously explained the relationship between ranges and skewness (Høstmark, 2019d).  

 
3.1.2.2.  %R APPROACHING ZERO 
 
Above we argued that, with %R approaching zero, there should be a negative %A vs. %B association, since the 

equation would approach %B = -%A + 100. The following ranges were changed to: A 1- 5; B 2 - 3; and R 0.10 – 0.15. 
These ranges gave the following values of %A, %B, and %R quartiles: %A 36.9, 42.8, and 54.2%; %B 43.2, 55.2, and 
61.3; %R 1.8, 2.2, 2.6%. Accordingly, the %R distribution had small values compared with those of %A (%B).  As 
shown in Fig. 2, there was – as expected- a strong inverse association between %A and %B (rho = -0.999, p<0.001).   

 

 
Figure 2: Association between A and B percentages of S, in the equation S = A + B + R, see text. Uniformly 

distributed RANDOM numbers (n = 200) were used.  Ranges were; A: 1 - 5; B: 2 - 3; R: 0.10 – 0.15.  %A vs. %B: rho 
= -0.999, p < 0.001. Equation of the regression line (SE in parentheses):   %B = -1.04 (0.002) *%A +99.7(0.11), n 

=200. 
 
Equation of the regression line was %B = -1.04 (0.002) *%A +99.7(0.11), n =200, i.e. showing a slope close to -

1.  
Thus, when %R in the equation %B = -%A + (100 -%R) approached zero, then we obtained a negative %A vs. 

%B association. In additional computer experiments, we changed ranges of the variables in many ways. However, 
the correlation outcomes were always as predicted above. Thus, decreasing (increasing) the %R range improved 
(made poorer) the negative %A vs. %B association (not shown), irrespective of whether the %R distribution was 
moved towards lower (higher) values by altering the R range only, by changing the A and/or B ranges, or by altering 
ranges of all of the current variables. These experiments seem to support the idea that the above negative association 
between A and B percentages is a case of Distribution Dependent Correlations.  
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     APPLYING THE RELATIONSHIP BETWEEN SUM (S) AND PERCENTAGES OF S TO EXPLAIN 
ASSOCIATIONS BETWEEN THE PERCENTAGES 

       
3.2.1. THEORETICAL CONSIDERATIONS  
 
Above it was suggested that, with a combination of two low-number variables (A, B) relative to one high-number 

variable (R), we might expect a positive association between %A and %B.  With this condition, A (B) percentages of 
S should decrease, and %R increase when S increases from lowest to highest value.  Accordingly, we should expect a 
positive correlation between A and B percentages, since both of them are negatively related to S. To explain this 
outcome further, we omit ranges of the variables, i.e.  A + B + R = S.  The A, B, and R fractions of S are A/S, B/S, and 
R/S, respectively. Since A and B have low numbers and low ranges relative to S, the A and B fractions (percentages) 
should decrease with increasing S from lowest to highest value within the S range. The R fraction of S is R/S=R/ (A 
+ B + R), or 1/ (1 + z/R), if z =A + B. Since z is small compared with R, the R fraction (and percentage) of S should 
increase with increasing R, and accordingly also with increasing S, because R is the main contributor to S. Thus, S 
should be positively associated with %R.  Since % A and %B are both negatively associated with S, these percentages 
should be positively associated. Furthermore, the positive association between %R and S explains the negative 
association between %R and %A (%B). Accordingly, the relationships between S and percentages of S may explain 
the positive %A vs. %B association, as well as the inverse relationships between %R and %A (%B).  

On the other hand, with two variables (A and B) having high numbers, relative to a third one (R), we should 
expect a negative %A vs. %B association. In this case, sum (S) of the 3 variables would approach S = A + B, i.e. %A + 
%B =100. Conceivably, when approaching a condition involving two variables only, their relative amounts should be 
expected to vary inversely. However, is the above “relation to sum” approach useful to explain such correlations?  In 
this case, the A fraction of S would approach A/S = A/ (A + B) = 1/(1 + B/A) and the B-fraction would approach 
B/(A+B) = 1/(A/B + 1), raising the question of whether the A (B) fraction of S increases or decreases with increasing 
S-values. A negative %A vs %B association should be expected if S is positively related to one of the fractions, and 
negatively associated with the other one. To evaluate this question, we have to know the ranges of A and B, and 
consider whether %A(%B) increases or decreases as S goes from lowest to highest value.  The minimum value of the 
A-fraction would approach 1/ (1 + Bmax/Amin), and the maximum value 1/ (1 + Bmin/Amax). Corresponding S 
values would be: (Amin + Bmax), and (Amax + Bmin).  Accordingly, if (Amax + Bmin) > (Amin + Bmax), then we 
should expect %A to be positively associated with S. Conversely, if (Amax + Bmin) < (Amin + Bmax), then we should 
expect a negative S vs. %A relationship. A similar reasoning should apply to S vs. %B. Thus, a negative %A vs. %B 
association should be expected, if %A (%B) increases (decreases) with increasing S. However, if S is close to be 
similar with the lowest and highest %A (%B) values, then the “association to sum” approach should not be useful to 
explain correlations between %A and %B, as exemplified below.   

 
3.2.2. COMPUTER EXPERIMENTS TO TEST THE HYPOTHESES 
            

3.2.2.1. POSITIVE %A VS. %B ASSOCIATIONS 
 
We generated 200 uniformly distributed random numbers with ranges shown in Fig. 1 (left panel), i.e. A: 0.1 - 

0.2; B: 0.3 - 0.5; and R: 2 - 20. As expected, S correlated negatively with %A (rho = -0.904) and with %B (rho = -
0.949), and positively with %R (rho = 0.962), p<0.001 for all. The finding that S correlated negatively with both of 
%A and %B might explain the positive %A vs. %B association (rho = 0.872, p < 0.001), see Fig. 1 (left panel). 

Next, the A and B ranges were narrowed appreciably, and R broadened, to be like ranges shown in Fig. 1, middle 
panel, i.e. A: 0.10 – 0.11; B: 0.30 – 0.33; and R: 2 – 30. With the current values of the A, B, and R fractions of S, we 
obtain the following approximated values of the percentages: %A = 11/S, and %B = 32/S, or S = 11/%A, and S = 
32/%B, suggesting an inverse relationship between S and A (B) percentages. Furthermore, since one particular S-
value in this special case corresponds closely to one %A (%B) value only, the S vs. % A (% B) scatterplot should be 
close to a line, as was observed (Fig. 3). Additionally, from the approximated formulas above, it is seen that a one-
unit increase in %A (%B) at low levels of the percentages would be associated with a larger decrease in S than a 
similar increase at higher levels, suggesting a curvilinear negative S vs. %A (%B) association, with the concave 
upwards. With the current ranges of the variables, R = S - 0.43. The R fraction of S, i.e.  R/S = 1- 0.43/S, showing that 
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%R and S are positively associated. Additionally, the formulas also imply that the increase in S per unit increase in 
%R is augmented with increasing values of R (%R). Hence, we should expect a curvilinear positive S vs. %R 
scatterplot with the concave upwards. Similar conclusions about the curve shapes may be obtained by considering 
derivatives of the above functions (not shown).  A computer experiment with random numbers was in accordance 
with these considerations (Fig. 3).  Correlations were: S vs. %A (%B): rho = -0.998 (-0.998); S vs. %R, rho = 0.999; 
%A vs. %B, rho = 0.996, p < 0.001 for all (n = 200). 

 
 

   
Figure 3: Association between sum (S) of A, B, and R, and their percentages, when ranges of A and B were 

narrow relative to R, i.e.  A: 0.10 – 0.11; B: 0.30 – 0.33; and R: 2 – 30. The figure relates to the equation S = A + B + R, 
see text. Uniformly distributed RANDOM numbers (n = 200) were used. Left and middle panels: S vs. %A (%B): rho 

= -0.998 (-0.998). Right panel: S vs. %R, rho = 0.999; %A vs. %B, rho = 0.996, p < 0.001 for all (n = 200). 
 
When changing ranges of A, B, and R to be like those shown in Fig. 1, right panel, the scatterplot of the S vs. %A 

(%B, %R) should be poorer, since in this case the close association between S and percentages of S would be 
disturbed. The results of a computer test was qualitatively as expected (Fig. 4).  S vs. %A (%B) gave rho = - 0. 484 (-
0.669), left and middle panels. Also, the S vs. %R scatterplot (Fig. 4, right panel) became poorer; rho = 0.752), p < 
0.001 for all. 

These results show that positive associations between percentages in the current conditions are distribution 
dependent ones, and that they may be explained by simple algebraic approaches. 

 

   
Figure 4: Association between the sum (S) of A, B, and R, and their percentages of S, when ranges of A and B 

were broadened. The figure relates to the equation S = A + B + R, see text. Uniformly distributed RANDOM numbers 
(n = 200) were used.  Ranges were: A: 0.10 – 0.5; B: 0.2 -0.7; R: 2 – 8. Left and middle panels: S vs. %A (%B): rho =-

0.484 (-0.669). Right panel: S vs. %R, rho = 0.752, p < 0.001 for all (n = 200). 
 

3.2.2.2. NEGATIVE %A VS. %B ASSOCIATIONS  
 

3.2.2.2.1. DIFFERENT RANGES OF A AND B 
 
We first considered two high-number variables (A, B) relative to R; if ranges of A and B were different. One 

example of this condition could be: A 1- 5; B 2 - 3; and R 0.10 – 0.15.  The theoretical minimum and maximum values 
of the A fraction in this case would approach A/(A+B) = 1/ (1 + 3) = 0.25, and 5/ (5 + 2) = 0.71, respectively. Similarly, 
minimum and maximum values of the B fraction would be 2/ (5 +2) = 0.29, and 3/ (1 +3) =0.75. Corresponding 
minimum (maximum) S values would be: 4 (7) and 7 (4). Therefore, we should expect a positive association between 
S and the A-fraction (percentage), and a negative one between S and the B-fraction (percentage).  Accordingly, A and 
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B percentages should be negatively associated. A computer test showed these values: Spearman’s rho for S vs %A 
(%B): 0.875 (-0.864); %A vs. %B: rho =-0.999, p<0.001 for all; n = 200.  The extrapolated scatterplot (not shown) 
did not cross the %A axis at exactly 100%, or the %B axis at 0%, due to the approximations done. Thus, with the 
current A and B ranges, it seems that the “relation to sum” approach might apply to explain also some negative 
correlations between percentages of the same sum.   
 

3.2.2.2.2. EQUAL RANGES OF A AND B  
 
We next tested the suggested conditions expected to give negative correlations between %A and %B, i.e. two 

high-number variables (A, B) relative to R; if ranges of A and B, and where ranges were equal. The following ranges 
were chosen: 1- 10 for both of A and B, and 0.1 – 0.15 for R, giving the following approximated minimum and 
maximum values of the A and B fractions of S: 1/(1 + B/A) = 1/(1 + 10/1) = 0.09, and 1/(1 + 1/10) = 0.91, 
respectively, i.e. %A  was running from approximately 9 to 91%. However, the corresponding S values would be 11 
for both of the “extreme” %A (%B) values. We might, accordingly, expect a poor association between S and %A (%B). 
A computer experiment with uniformly distributed random numbers (n = 200) showed a strong inverse relationship 
between %A and %B (rho = -0.999, p<0.001). However, S did not correlate significantly with %A (rho = -0.055, p = 
0.443) or %B (rho = 0.085, p = 0.232), see scatterplot in Fig. 5. 

 

  
Figure 5: Scatterplot of S vs. %A (left panel) and %B (right panel) when ranges of A and B were both 1 – 10, 

and R 0.10 – 0.15. The figure relates to the equation %B = -%A + (100 -%R), see text. 
 
This example suggests that, with similar or close to similar A (B) ranges, we should expect poor correlations 

between S and A (B) percentages, since approximately similar S-values are found at the minimum and maximum 
vales of %A (%B). This suggestion was corroborated in computer experiments (results not shown). Accordingly, 
under the current conditions, the “relation to sum” approach does not seem useful to explain the observed strong 
negative %A vs. %B correlation (rho =0.999, p<0.001, n=200). However, also in the current example, the negative 
correlation is well explained by the equation %B = -%A + (100 - %R), which may be roughly approximated to %B = 
-%A + 100, when %R values are small.  

 
4. TURNING POINT 
 
In the general equation %A + %B + %C =100, i.e.  %B = -%A + (100 - %C), increasingly higher (lower) values of 

%C is expected to promote a positive (negative)%A vs. %B association. Therefore, a Turning Point should be found 
where a positive (negative) correlation between A and B percentages turns to become negative (positive), in 
response to progressively altering ranges of the variables.  Accordingly, close to the Turning Point we should 
probably not find a significant correlation between A and B percentages. We previously reported this outcome in 
computer experiments (Høstmark, 2019c). 

With %A + %B + %C = 100, the Turning Point between e.g. the A and B percentages may also be related to 
skewness of the distributions of the A, B, and C percentages (Høstmark, 2019d). Thus, high negative (positive) 
skewness of the %C histogram is associated with strong positive (negative) %A vs. %B correlation (Fig. 6), see also 
the examples above. As explained previously, varying skewness of the histograms may be related to differences in 
ranges of the variables (Høstmark, 2019c; 2019d).  In Fig. 6, skewness of %C was plotted against rho for %A vs. %B.  
With uniformly distributed random numbers, giving altogether 49 particular combinations of A, B, C ranges (n = 200 
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for each of the points), we were able to produce a scatterplot appearing like a mirror image of a sigmoidal curve (Fig. 
6). Scatterplot shapes like that shown in Figure 6 could as well be made for %A skewness (abscissa) against the 
ordinate being rho for %B vs. %C correlation (or for %B skewness as related to  rho for %A vs. %C), not shown. This 
outcome was similar if using random numbers with uniform and normal distributions (Høstmark, 2019d).  

 

 
Figure 6: Association between skewness and correlations. With reference to the equation %A + %B + %C = 

100, or %B = - %A + (100 - %C), see text, skewness of the %C histogram was plotted against Spearman’s rho for the 
correlation between percentages of the remaining two variables (A and B). The figure was made using uniformly 
distributed random numbers of A, B, and C. Each of the 49 points was computed based on 200 random number 

“cases” (i.e. total N = 9800), each “200-set” was computed with particular ranges for A, B, and C. From Høstmark 
(2019d). Copyright: Høstmark, AT. 

 
5. DISTRIBUTION DEPENDENT CORRELATIONS: A MATHEMATICAL PRINCIPLE CAUSING BIAS, OR A 

REGULATORY MECHANISM IN PHYSIOLOGY? 
 
The present work strongly suggests that variability is crucial for obtaining correlations (positive as well as 

negative) between percentages of the same sum.  True within-subject variability is related to various periods of time, 
e.g. month, week, or day, and is largely governed by genetics. However, also external factors, such as diet, physical 
activity, and environment in general could influence variability.  All of these factors compose the true biological 
variability. In addition, the distribution (range) of a biological variable could be strongly influenced by various types 
of random and systematic errors, e.g. related to sampling, storage, measurements, and to information bias. 
Conceivably, between-subject variability should be greater than the within-subject one, due to between-subject 
variability of DNA per se, and differences in epigenetic influences, such as DNA methylation and histone modification.  

It is beyond the scope of this article to discuss the many types of error in physiological research.  However, the 
many causes of variability do seem to be an argument in favor of considering Distribution Dependent Correlations 
(DDC) as a mathematical artifact, when it comes to possible physiological interpretations of such correlations.  On 
the other hand, the mathematical principle of DDC could offer an excellent tool to regulate metabolism, raising the 
question of whether evolution might have utilized this principle.  The two examples below apparently seem in favor 
of this latter idea. Thus, by determining the within-person variability, i.e. where on the scale the variables are placed, it 
follows from the DDC rules described in this article, whether relative amounts will be positively or negatively associated, 
or not correlated at all. In other words, evolution could govern associations between percentages of the same sum, 
through regulating within-person distributions of variables. Since the mathematical rules giving Distribution 
Dependent Correlations are general ones, they might apply to any unit systems in nature. The idea that true, within-
person variability may be involved as a potent regulatory factor in biology seems to be a novel one. Below, we show 
in brief two examples from physiology.  
 

6. EXAMPLES FROM PHYSIOLOGY 
 

 EXAMPLE 1: CORRELATIONS BETWEEN FATTY ACID PERCENTAGES, AS OBTAINED IN A DIET TRIAL 
IN CHICKENS 

 
We recently reported that relative amounts of fatty acids that are precursors of eicosanoids (docosanoids) were 

positively associated in breast muscle lipids of chickens (Høstmark and Haug, 2018; 2020b-c). In this case, the 
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concentration distributions of the various fatty acids were crucial for obtaining the correlations. For example, relative 
amount of arachidonic acid (AA, 20:4 n6) was shown to correlate positively with percentage eicosapentaenoic acid 
(EPA, 20:5 n3),  and with some other eicosanoid precursor fatty acid percentages (Høstmark and Haug, 2020b). All 
of these fatty acids were low-number ones, with low variability, relative to sum of the remaining fatty acids.  Since 
AA and EPA derived eicosanoids have opposing cellular effects (Mayes, 2000; Baker, 1990; Gogus and Smith, 2010), 
it was suggested that the positive association between %AA and %EPA might possibly serve to ensure a proper 
balance between the metabolic effects of these powerful metabolites.  Surprisingly at the time, the positive 
correlations between eicosanoid precursor percentages could be well reproduced when random numbers were used 
in lieu of the true values of the fatty acids, provided that the random numbers were sampled with the true ranges 
(Høstmark and Haug, 2018; 2019a). Additionally, minor changes in the ranges had major effects on the correlation 
outcomes, suggesting that the correlations were distribution dependent ones.  Thus, by orchestrating where on the 
scale the concentrations of various fatty acids are placed, evolutionary mechanisms might achieve that some 
correlations between relative amounts must be positive whereas others must be negative, due to the described 
mathematical principles of Distribution Dependent Correlations.  

In breast muscle lipids of chickens, the equation %AA= -%EPA + (100 - %ALA) was considered (Høstmark and 
Haug, 2019e), where ALA = α-linolenic acid (18:3 n3). This equation is of the type previously described in this article:  
%B = -%A + (100 -%R).  Two of the fatty acids (AA and EPA) are low-number ones relative to ALA (Høstmark and 
Haug, 2019e).  Using random numbers, the “ALA” range was hypothetically increased, from a very narrow range, 
while keeping the true ranges of AA and EPA. By progressively moving the %ALA distribution towards higher values, 
the negative %AA vs. %EPA association was attenuated, to eventually pass through a Turning Point (Fig. 7); 
thereafter, a negative %EPA vs. %AA correlation turned to become increasingly positive, in response to further 
increasing %ALA values (Høstmark and Haug, 2019e). In this experiment, the Turning Point between positive and 
negative %EPA vs. %AA correlations was attained as the 1st, 2nd, and 3rd quartiles of the %ALA distribution were 
approximately 28, 30, and 38%, respectively. 

 From this experiment, it would appear that the Turning Point is achieved when ALA range is between 0.1 – 0.4 
and 0.1 – 0.3 g/kg; the measured physiological ALA concentration (g/kg) being (mean ± SD) 0.53±0.32 g/kg 
(Høstmark and Haug, 2019e).  These results with hypothetical random numbers for ALA raises the question of 
whether true ALA levels may attain so low levels that the positive association between relative amounts of EPA and 
AA becomes seriously disturbed, eventually leading to a negative relationship between %EPA and %AA. If so, we 
hypothetically might expect metabolic disturbances related to an imbalance between eicosanoids derived from AA 
and EPA. We do not know, however, whether such conditions do exist.  Anyhow, the above calculations illustrate a 
potentially strong effect of ALA concentration upon the relationship between relative amounts of EPA and AA.  

 

 
Figure 7: Scatterplot showing the association between ALA variability (expressed as the maximum value 

divided by the minimum value) and Spearman’s rho for the association between %EPA and %AA. The figure relates 
to the equation % EPA + %AA + %ALA =100, or %AA = - %EPA + (100 - %ALA), see text.   For all points on the 
figure, we generated 163 RANDOM numbers with uniform distribution, sampled within the true (measured) 

concentration range, i.e. for EPA 0.13 – 0.24 g/kg, and for AA 0.25 – 0.42 g/kg. For ALA we used the following 12 
hypothetical ranges:  0.1 – 10.0; 0.1 – 5.0; 0.1 – 3; 0.1 – 2.0; 0.1 – 1.5; 0.1 – 1.0, 0.1 – 0.5; 0.1 – 0.4; 0.1 – 0. 3, 0.1 – 0. 
2; 0.1- 0.15 1, 5; and 0.1 – 0.11.  p<0.001 for all correlation coefficients, except for those close to the Turning Point 

between positive and negative rho – values. From Høstmark and Haug (2019e).  Copyright: Høstmark, A.T. 
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 EXAMPLE 2. ASSOCIATION BETWEEN RELATIVE AMOUNTS OF WHITE BLOOD CELL (WBC) COUNTS 
 
Searching for possible negative associations between percentages of the same sum, in physiology, the counts of 

WBC seemed a possible candidate. Indeed, counts of segmented neutrophils (N) and lymphocytes (L) are high-
number variables relative to sum of the remaining white blood cells (R).  The equation %N = -%L + (100 -%R) would 
approach %N = -%L + 100 with small %R values relative to %N and %L. Hence, we should expect an inverse 
relationship between %N and %L. Our previous random number analyses (Høstmark and Haug, 2018;2019b) 
showed that a negative association would prevail until reaching the Turning Point. Thus, a negative %N vs. %L 
association should be expected, using random numbers generated on the basis of reported (Lacher et al., 2012) WBC 
values. If so, the associations should change, in response to altering ranges, as discussed above. The results shown 
in Fig. 8 were as anticipated. Thus, relative amounts of random numbers, used to represent the true values of N and 
L, showed a strong negative correlation in each gender. The correlation outcome was qualitatively the same, 
irrespective of whether the random numbers were generated based upon the reported (Lacher et al., 2012) within-
person or the between-person values (Spearman’s rho being at least -0.9 in each of the conditions, p < 0.001, n = 
200).  

The N/L ratio has been used as a risk factor, e.g. for atherosclerosis (Meng et al., 2018), and COVID-19 infections 
(Liu et al., 2020). This ratio is equal to the ratio between N and L percentages, since %N and %L in each subject are 
computed from the same sum. Thus, the N and L percentages of total WBC allow calculation of the N/L ratio, as well 
as evaluating whether the relative amounts of N and L correlate.  

However, the N/L ratio per se does not provide sufficient information to evaluate whether N and L percentages 
of total white blood cell count are correlated. However, from the above equations of the regression lines for %N vs. 
%L (based upon random numbers), it is seen that the slopes are not far from -1, which would be the slope when 
computing %N and %L from the sum of N and L only, i.e. %N = -%L +100. If so, rho for %N vs. %L should be equal to 
-1.000, irrespective of the N and L ranges, and the extrapolated regression line should theoretically cross axes at 
exactly 100%.  An improved approximation of the equation would be:  

%N(p – q) = -(%Nmax - %Nmin)/(%Lmax - %Lmin) * %L(r – s) + (100 -%R(t – u))         
In this equation, R = M + E + B, and subscript parentheses indicate ranges of the percentages. 

 
WITHIN-PERSON 

  

BETWEEN- PERSON 

  
Figure 8:  Association between relative amounts of RANDOM numbers in lieu of true values of segmented 

neutrophil (N) counts, and lymphocyte (L) counts (103/µL). Random numbers with normal distribution were 
generated based on reported mean (SD) values of human blood cells [14]. All of the negative associations were 

highly significant (Spearman’s rho at least equal to - 0.9, p < 0.001, n = 200). Note differences in scale concerning 
within-person (top) and between-person (bottom) panels, due to differences in variability. Equations of the 

regression lines were for women, within-person: %N = - 1.16 (0.03)*%L + 94.6 (0.8); for men, within - person: %N 
= -1.16 (0.03)*%L + 92.6 (0.8); for women, between-person: %N = -1.07 (0.03)*%L + 91.5 (0.9); and for men, 
between-person: %N = -1.12 (0.04)*%L + 90.7 (1.1). From Høstmark AT (2020d). Copyright: Høstmark, A.T. 
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Thus, distribution per se (place on the scale/range/variability/skewness) of all types of WBC should influence 
the negative correlation between N and L percentages. Since M provides about 0.5, E about 0.2, and B about 0.04 
(*103/µl) of R (Lacher et al., 2012), the order of potency for influencing the %N vs. %L correlation should be: M > E > 
B, i.e. an apparent small effect of B relative to that of M and E. The current %R values were far from zero, as indicated 
by quartiles of the computed (random number) %R distribution, being about 10, 12, and 15%, respectively (histogram 
not shown). Still, the strong negative %N vs. %L association prevailed (Fig. 8).  According to the above reasoning, we 
would anticipate improved (poorer) %N vs. %L association (scatterplots) with decreasing (increasing) values of %R, 
and this outcome was observed in computer experiments [Høstmark, 2020d). Obviously, it is not justified to relate our 
findings to health and disease, since random numbers were used to replace the true values, and effects of large alterations 
in the ranges were studied. Nevertheless, the results demonstrate a powerful influence of changing variability upon 
the negative association between percentages of the same sum, raising the question of whether evolution might utilize 
the mathematical principles of DDC to obtain an inverse %N vs. %L relationship. Thus, with WBC subgroups directed 
to particular places on the scale, the relative amounts of N and L must be inversely related, according to the presented 
mathematical rules.  

 
7. CONCLUSIONS  
 
The results of the present work suggest that distribution (range, variability, place on the scale, skewness) of 

positive scale variables determines whether their relative amounts correlate positively, negatively, or not at all. We 
accordingly suggest the name Distribution Dependent Correlations (DDC). Such correlations may be understood 
through simple algebraic considerations. The many types of variability could make it hard to detect and appreciate 
true biological within-person DDC in various studies, and DDC could cause bias. On the other hand, evolution might 
utilize the mathematical principles of DDC to regulate metabolism, as suggested by the presented examples. Thus, 
by directing variables to particular places on the scale, evolution might ensure that relative amounts of some 
variables must become positively associated, whereas percentages of others are negatively correlated. Since DDC 
rules are general, they should apply to any unit system in nature. 
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