DALAFLOXACIN- ANTIBACTERIAL: A REVIEW

Bhawana Sain *3, Dr. Vandana Sharma 1, Ashok Kumar Sharma 2, Mr. Rakesh Goyal 2, Mr. Mukesh Sharma 2, Shimala Saini 3
1 Principal, Arya College of Pharmacy, Kukas, Jaipur, India
2 Professor, Arya College of Pharmacy, Kukas, Jaipur, India
3 Research Scholar, Arya College of Pharmacy, Kukas, Jaipur, India

Abstract

Antibiotics (from ancient Greek ἀντιβιοτικά, antiviotika), also called antibacterials, are a type of antimicrobials drug used in the treatment and prevention of bacterial infections. Cellulitis is an infection that involves the outer layers of the skin. It is commonly caused by bacteria known as beta-hemolytic streptococcus or Staphylococcus aureus. You may experience pain, swelling, tenderness, warmth, and redness in the infected area. Complicate skin and soft tissue infections (SSTIs) are common for both outpatient and hospitalized patients and traditionally include various clinical symptoms ranging from minor superficial infections to necrotizing fasciitis with high rates of mortality. Delaflaxin (DLX) is a new FQ pending approval, which has shown a good in vitro and in vivo activity against major pathogens associated with ABSSSIs and CA-RTIs. It also shows good activity against a broad spectrum of microorganisms, including those resistant to other FQ, and stability against multiresistant strains.

Keywords: Dalafloxacin; Antibacterial; Bacterial Infections.

1. Introduction

ANTIBIOTICS- Antibiotics (from ancient Greek ἀντιβιοτικά, antiviotika), also called antibacterials, area type of antimicrobials drug used in the treatment and prevention of bacterial infections. They may either kill or inhibit the growth of bacteria. These are the main classes of antibiotics.

1) Penicillins such as penicillin and amoxicillin
2) Cephalosporins such as cephalexin(Keflex)
3) Macrolides such as erythromycin (E-Mycin), clarithromycin (Biaxin), and azithromycin (Zithromax)
4) Fluoroquinolones such as ciprofloxacin (Cipro), levofloxacin (Levaquin), and ofloxacin (Floxin)
5) Sulfonamides such as co-trimoxazole (Bactrim) and trimethoprim (Proloprim)
6) Tetracyclines such as tetracycline (Sumycin, Panmycin) and doxycycline (Vibramycin)
7) Aminoglycosides such as gentamicin (Garamycin) and tobramycin (Tobrex)

Bacteria can cause different types of skin infections.
1) cellulitis
2) folliculitis
3) impetigo

Cellulitis
Cellulitis is an infection that involves the outer layers of the skin. It is commonly caused by bacteria known as beta-hemolytic streptococcus or Staphylococcus aureus. You may experience pain, swelling, tenderness, warmth, and redness in the infected area. Antibiotics that may be used include cephalosporins, dicloxacillin, clindamycin, or vancomycin.

Folliculitis
It is a general term used to describe an infection of the hair follicles commonly caused by Staphylococcus aureus, resulting in red pimples. You may experience redness, tenderness, or swelling of the affected area. Mild folliculitis can be treated with topical antibiotics, such as erythromycin, clindamycin, or mupirocin. More severe infections, such as carbuncles (a group of infected hair follicles) and larger furuncles, may require a surgical cut and drainage of the affected area. After drainage, it is important to clean the area with antibacterial soap; then you should apply the antibiotic ointment to the affected area of the skin. If needed, your doctor may prescribe oral antibiotics such as cephalosporins or dicloxacillin.

Impetigo
Impetigo is a contagious skin infection commonly caused by Staphylococcus aureus. Although this infection may occur in adults, it is most often seen in children aged 2 to 5 years and is usually spread through direct contact with another person who has the infection. You may experience tenderness, itching, sores, or blisters that can rupture and form honey-colored crusts. It can affect different parts of the body such as the face, arms, or legs. It also can affect moist parts of the body, such as the armpits, neck folds, and diaper areas. Impetigo can be treated with a topical ointment or oral antibiotic. Oral antibiotics such as penicillins or cephalosporins are used for more severe infections.

Complicate skin and soft tissue infections (SSTIs) are common for both outpatient and hospitalized patients and traditionally include various clinical symptoms ranging from minor superficial infections to necrotizing fasciitis with high rates of mortality. Several studies have shown an increase in ambulatory and hospital visits related to these infections and an increase in the length of stay in a hospital, mortality risk and health costs. In North American hospitals, an increase of 29% was detected in hospital admissions because of SSTIs between 2000 and 2004.

In 2010, the Food and Drug Administration (FDA) proposed a new classification, differentiating acute bacterial skin and skin structure infections (ABSSSIs), which include three entities: cellulitis and erysipelas, wound infections and major skin abscesses. Among the involved...
microorganisms, Staphylococcus aureus is the most common, being the detection of methicillin-resistant S. aureus (MRSA) an independent risk factor for increased risk of mortality, length of hospital stay and hospital costs. Furthermore, S. aureus has a high tolerance to acidic pH, surviving in acidic environments such as abscesses and empyema, where most antibiotics show decreased activity. Gram-negative organisms are isolated in smaller proportion, but the increase of multiresistant bacteria, such as Pseudomonas aeruginosa and beta-lactamase and carbapenemase enterobacteria carriers, has decreased the available therapeutic arsenal.

In the field of respiratory infection, pneumonia remains, along with influenza, the respiratory infection with the highest mortality. Among the most commonly used antibiotics in the treatment of respiratory tract infections (CA-RTIs) are fluoroquinolones (FQ), as well as β-lactams and macrolides. Despite its still good activity, there has long since been warning about increasing resistance among common pathogens in CA-RTIs, such as Streptococcus pneumonia, Haemophilus influenza and Moraxella catarrhalis.

The resistance of Neisseria gonorrhoeae to quinolones has increased worldwide in the last decade with percentages of ~15%–20%, in some geographical areas reaching 50%. Main consequence has been a change in World Health Organization (WHO) recommendations for empiric sexually transmitted infections (STIs) therapy to a cephalosporin and azithromycin combination, reserving the quinolone for targeted therapy.

Delafloxacin (DLX) is a new FQ pending approval, which has shown a good in vitro and in vivo activity against major pathogens associated with ABSSSIs and CA-RTIs. It also shows good activity against a broad spectrum of microorganisms, including those resistant to other FQ, and stability against multiresistant strains. Its pharmacokinetic properties and excellent activity in acidic environments make it an alternative in the treatment of these and other infections. In this manuscript, a detailed analysis of this new FQ is performed, from its chemical structure to its in vivo activity in recently published clinical trials. Its possible place in the current antimicrobial outlook and its possible use in other infectious contexts are also discussed. Delafloxacin is unique among the approved quinolones in that its antibacterial activity is enhanced in acidic conditions, an environment seen across many infected sites including abscesses, lung tissues, and abdominal fluids. Indeed, delafloxacin is > 8 times more potent than moxifloxacin against S. aureus at pH 5.5; however, at a higher pH the difference decreases.

Is a fluoroquinolone antibiotic used to treat acute bacterial skin and skin structure infection, approved by the FDA in June. It was developed by “Melinda”

Structure
IUPAC Name- 1-(6-amino-3,5-difluoropyridin-2-yl)-8-chloro-6-fluoro-7-(3-hydroxyazetidin-1-yl)-4Oxo-quinoline-3-carboxylic acid

Formula - C_{18}H_{12}ClF_{3}N_{4}O_{4}
Molar Mass - 440.76 g/mol

Gram Positive Bacteria

1) Staphylococcus aureus (including methicillin resistant and methicillin-susceptible [MSSA] isolates).
2) Staphylococcus haemolyticus, staphylococcus lugdunensis, staphylococcus agalactiae staphylococcus anginosus group.

Gram-negative organism:-Escherichia coli, enterobacter cloacae, klebsiella pneumonia and pseudomonas aruginosa.

Warning and precaution: -Tenalinitis and tendon rupture, peripheral neuromyasthenia gravis nervous system effects, Exacerbation of myasthenia gravis, hypersensitivity reaction and Clostridium difficile - Associated Diarrhoea, and development of drug resistant bacteria.

Contraindications: - Baxdela is contraindicated in patients with knows hypersensitivity to delafloxacin or any of the fluoroquinolone class of antibacterial drugs or any of the components of baxdela.

Delafloxacin (DLX) is a new FQ Pending approval which has to show a good in vitro and in vivo activity against major pathogens associated with ABSSSLS and CA-RTIS,

Mechanism of Action
DLX has show higher antibacterial power than other FQ, maintaining the same inhibitory activity of topoisomerase. It's the greatest strength seems to drive from three structural differences: It does not have a strong base in C7, becoming a weak acid and thus increasing its activity in acidic medium. The chlorine atoms in position C8 acts as an electron-withdrawing group reducing the reactivity of the heterocyclic and stabilining the molecule: and third the aromatic ring attached to N1 increase the molecular surface compared with other quinolone. By eliminating the basic group in C7 present in other FQ,DLX loses the ability to act as zwitterion acquiring a weak acid character.

Pharmacokinetics
The half-life (+½) varies in a range of hours with doses of 300mg up to 17h with higher doses, exhibiting a biexponential decrease in the plasma concentration.

- DLX shows good distribution, Volume of distribution at a steady state of 35L, similar to the total water volume of the body.
- DLX excretion is predominantly rural (65%) and mainly in unchanged form, with < 20% of the initial dose as glucuronide derivatives; recovering 28% of the total dose in feces.
- DLX clearance is reduced in patients with moderate and severe renal impairment.
However: After 14 days of IV treatment with two daily closes, there is no drug accumulation detected and, clearance on day 14 was similar to day one.

- Delafloxacin is unique in that it’s antibacterial potently increase as the pH environment becomes more acidic, a characteristic of infection settings.
- Delafloxacin has excellent in vitro activity against MRSA, with on MICqO ranging from 0.12 to 0.5 mg/ ml. In a phase -II study of ABSSSIS, Intravenous delafloxacin had comparable cure rates with linezolid but statistically greater cure sates when compared with vancomycin. In second phase II study of complicated skin and skin-structure infection delafloxacin had.

Pharmacokinetic-Pharmacodynamic (PK-PD) Target Attainment Analyses for Delafloxacin to Provide Dose Selection Support for the Treatment of Patients With Community-Acquired Bacterial Pneumonia.

Delafloxacin is an investigational IV and PO quinolone with activity against pathogens commonly associated with CABP, including Streptococcus pneumoniae (SP) and Staphylococcus aureus (SA), including methicillin-resistant isolates. To provide support for a delafloxacin IV to PO dosing regimen to treat patients with CABP, PK-PD target attainment analyses were undertaken.

2. Method

Using parameter estimates from a population PK model [3-compartment; mixed linear plus saturable elimination; 2 parallel first-order absorption processes; creatinine clearance (CLcr) was a predictor of clearance], free-drug plasma concentration-time profiles were generated for 5000 simulated patients with varying CLcr following delafloxacin 300 mg IV q12h for 3 days followed by 450 mg PO q12h for 2 days. AUC0-24 on Days 1 and 4 were calculated. Percent probabilities of PK-PD target attainment by MIC and overall (i.e. weighted over the MIC distributions for SP and SA isolates from the USA and Europe) were determined using median
free-drug plasma AUC: MIC ratio targets associated with 1- and 2-log10 CFU reductions from baseline from a neutropenic lung infection model for SP (3.36 and 24.5, respectively) and SA (7.92 and 36.2, respectively). The results were stratified by renal function group [normal (CLcr ≥90 mL/minute/1.73 m2) and mild (CLcr 60–89 mL/minute/1.73 m2) or moderate (CLcr 30–59 mL/minute/1.73 m2) renal impairment.

3. Results

Percent probabilities of attaining free-drug plasma AUC: MIC ratio targets associated with a 1-log10 CFU reduction from baseline by MIC on Day 1 by renal group for SP (figure 1) and SA (figure 2) were similar to those on Day 4. Percent probabilities of PK-PD target attainment on either day across renal groups were ≥99.5% for SP at a MIC value of 1 mg/L and ≥96.3% for SA at a MIC value of 0.5 mg/L. Overall
percent probabilities of PK-PD target attainment were ≥93.3%. For free-drug plasma AUC: MIC ratio targets associated with a 2-log10 CFU reduction from baseline, percent probabilities of PK-PD target attainment at a MIC value of 0.12 mg/L on either Day 1 or 4 were ≥99.8 and ≥93.7% for SP and SA, respectively.

there are fluoroquinolone antibacterial drug.

Common side effects

1) Nausea
2) Diarrhoea
3) Headache
4) Transaminase deviation
5) Vomiting

Administer baxdela for injection of a dose of 300mg by intervenous injection over 60 minutes every 12 hours of 450 mg baxdela tablet dally every 12 hours for 5 to 14 days total duration.

The drug was discontinued due to a side effect in 0 to 10% of patients therapy was discontinued most commonly due to articaria and hypersensitivity.

Gastro intentional: - common (1 % to 10 %): Nausea, diarrhoea, vomiting,
Abdominal pain dyspepsia, oral candidias, clostecidium difficile – associated diarrhoea,
Nervous system: - cases of sensory or sensorimotor axonal polyneuropathy resulting in paresthesias, hypoesthesias weakness,
Common – 1 to 10 %- headache.

Drug interaction: - Fluoroquinolones have been associated with disabling and potentially irreversible serious adverse reactions from different body systems that can occur together in the same patient. Commonly seen adverse reactions include tendinitis, tendon rupture, arthralgia, myalgia, peripheral neuropathy, and central nervous system effects (hallucinations, anxiety, depression, insomnia, severe headaches, and confusion). These reactions could occur within hours to weeks after starting a fluoroquinolone.

4. Uses

1) This drug for the treatment of Acute Bacterial Skin and Skin Structure Infections (ABSSSI).
2) FDA also indicated that this drug should be used cautiously because it may cause neuropathy, tendinitis or CNS related problems.
3) This drugs used in Gonorrhea (it is a sexually transmitted disease (STD). It’s caused by infection with the bacterium Neisseria gonorrhoeae.)
4) It is used in kidney failure (renal impairment/in medical condition kidney no longer work).
5) Delafloxacin treat Community-acquired pneumonia (CAP). the most common type of pneumonia, is a leading cause of illness and death worldwide. Over 100 microorganisms can cause CAP, with most cases caused by Streptococcus pneumoniae.
6) It used in meningitis (Meningitis is an inflammation of the meninges. The meninges are the three membranes that cover the brain and spinal cord. Meningitis can occur when fluid surrounding the meninges becomes infected by viral and bacterial infections).

References

[22] https://www.drugbank.ca/drugs/DB11943

(ABSSSI). Presented at: 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); September 9–12; 2012; CA, USA (Abstract E-208).

[49] Zinner SH, Vostrov SN, Alferova IV, Lubenko IY, Portnoy YA, Firsov AA. Comparative pharmacodynamics of the new fluoroquinolone ABT492 and ciprofloxacin with Escherichia coli

*Corresponding author.

E-mail address: Bhavanakamora@gmail.com