ON SEPARATION AXIOMS IN TOPOLOGICAL SPACES

Mahesh Bhat *1, Md.Hanif PAGE 2

*1 Department of Mathematics, S. D. M. College, Honnavar, Karnataka, INDIA
2 Department of Mathematics, B.V. B. College of Engg. & Technology, Hubli, Karnataka
INDIA

DOI: https://doi.org/10.29121/granthaalayah.v4.i6.2016.2650

ABSTRACT

The purpose of this paper is to introduce weak separation axioms via sgp-closed sets in topological spaces and study some of their properties.

Keywords:
sgp-closed set, sgp-open set, sgp-T0, sgp-T1, sgp-T2.

1. INTRODUCTION

General Topology plays very important role in all branches of Mathematics. An important concept in General Topology and Real Analysis concerns the variously modified forms of continuity and separation axioms etc. by utilizing the generalized closed sets.

In 1970, Levine [4] initiated the study of generalized closed(g-closed) sets, that is , a subset A of a topological space X is g-closed if the closure of A included in every open superset of A and defined a $T_{1/2}$ space to be one in which the closed sets and g-closed sets coincide. The notion has been studied extensively in recent years by many topologists. The study of g-closed sets has produced some new separation axioms. Some of these have been found useful in computer science and digital topology.

Recently Navalagi and Mahesh Bhat [7] introduced the notion of sgp-closed set utilizing pre closure operator. The notions of sgp-open sets, sgp-continuity are introduced in [7]. In this paper we continue the study of sgp-closed sets, with introducing and characterizing weak forms of separation axioms.
2. PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ)(or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A is any subset of space X, then Cl(A) and Int(A) denote the closure of A and the interior of A in X respectively.

The following definitions are useful in the sequel:

Definition 2.1: A subset A of space X is called(i) a semi-open set [3] if A ⊆ Cl(Int(A))(ii) a semi-closed set [2] if Int(Cl(A)) ⊆ A (iii) pre-open [5], if A ⊆ Int (Cl (A)). The complements of these sets are their respective closed sets in the space X.

Definition 2.3 [5]: The pre closure of a subset A of X is the intersection of all pre-closed sets containing A in X and is denoted by pcl(A).

Definition 2.2: A subset A of a space X is called
i. generalized-closed (in brief, g-closed) set [4] if Cl (A) ⊆ U and U is open in X. The complement of g-closed set is g-open set.
ii. semi generalized pre closed (briefly, sgp-closed) set [7] if pcl(A) ⊆ U, whenever A ⊆ U and U is semi-open in X.

The complement of sgp-closed set is sgp-open set and the family of all sgp-open sets of X is denoted by SGPO(X).

Definition 2.3[7]: A space X is said to be sgp-Tc-space if every sgp-closed set is closed set in it.

Definition 2.3[1]: A function f: X → Y is
i. sgp-irresolute if inverse image of sgp-closed set in Y is sgp-closed set in X.
ii. sgp-open if f(V) is sgp-open in Y for every open set V in X.

3. RESULTS AND DISCUSSIONS

We define and study the concept of sgp-T0-space.

Definition 3.1: A topological space X is called sgp-T0-space if for any pair of district points x, y of X, there exists sgp-open set G such that x ∈ G, y ∉ G or x ∉ G, y ∈ G.

Example 3.2: Let X = {a, b} and τ = {X, φ, {b}}. Then (X, τ) is sgp-T0-space, for distinct points a, b in X and {b} is the sgp-openset such that a ∉ {b}, b ∈ {b}.

Theorem 3.3: Every subspace of a sgp-T0-space is sgp-T0-space.

Proof: Let X be a sgp-T0-space and Y be a subspace of X. Let x and y be two distinct points of Y. As Y is a subspace of X, x, y are also distinct points of X. Since X is sgp-T0-space, there exists a sgp-open set G such that x ∈ G, x ∉ G. Then Y ∩ G is sgp-open in Y containing x but not y. Hence Y is sgp-T0-space.

Theorem 3.4: If f: X → Y is injection sgp-irresolute function and Y is sgp-T0-space, then X is sgp-T0-space.
Proof: Suppose Y is sgp-T_0-space. Let a and b be two distinct points in X. Since f is an injection, f(a) and f(b) are distinct points in Y. Since Y is sgp-T_0-space, there exists sgp-open set G in Y such that f(a) ∈ G and f(b) /∈ G. Again since f is sgp-irresolute, $f^{-1}(G)$ is sgp-open set in X such that a $\in f^{-1}(G)$ and b /∈ $f^{-1}(G)$. Hence X is sgp-T_0-space.

Theorem 3.5: If X is sgp-T_0-space, sgp-T_c-space and Y is sgp-closed subspace of X, then Y is sgp-T_0-space.

Proof: Let X be sgp-T_0-space, sgp-T_c-space and Y is sgp-closed subspace of X. Let a and b be two distinct points of Y. As Y is subspace of X, a and b are two distinct points of X. Since X is sgp-T_0-space, there exists sgp-open set G such that a \in G and b /∈ G. Again since X is sgp-T_c-space, G is open in X. Then Y \cap G is open in Y. So a \in Y \cap G and b /∈ Y \cap G. Hence Y is sgp-T_0-space.

Now, we introduce and study sgp-T_1-space

Definition 3.6: A topological space X is said to be sgp-T_1-space if for any pair of distinct points a and b there exist sgp-open sets G and H such that a \in G, b /∈ G and a /∈ H, b \in H.

Example 3.7: Let X = {a, b} and $\tau = \{X, \phi, \{a\}, \{b\}\}$. Then (X, τ) is a topological space. sgp-open sets are X, ϕ, {a}, {b}. Here a and b are two distinct points of X, then there exist sgp-open sets {a}, {b} of X such that a \in {a}, a /∈ {b} and a /∈ {b}, b \in {b}. Therefore X is sgp-T_1-space

Theorem 3.8: Every sgp-T_1-space is sgp-T_0-space but not conversely.

Proof: Let c and d be two distinct points of X. Since X is a sgp-T_1-space, there exist sgp-open sets G and H such that c \in G, d /∈ G and c /∈ H, d \in H. We have c \in G and d /∈ G. Therefore X is sgp-T_0-space

Example 3.9: Let X = {a, b} and $\tau = \{X, \phi, \{b\}\}$. Then X is a sgp-$T_0$-space but not a sgp-$T_1$-space. For any two distinct points a and b of X and {b} is sgp-open set such that a \in {b}, b \in {b}, but there is no sgp-open set G with a \in G, b /∈ G for a /∈ b.

Theorem 3.10: If f: X \rightarrow Y is a bijective sgp-open function. If X is a sgp-T_1-space and sgp-T_c-space, then Y is a sgp-T_1-space.

Proof: Let y_1 and y_2 be two distinct points of Y. Since f is bijective, there exist distinct points x_1 and x_2 of X such that f(x_1) = y_1 and f(x_2) = y_2. Since X is a sgp-T_1-space, there exist sgp-open sets G and H such that x_1 \in G and x_2 \notin G and x_1 \notin H and x_2 \in H. Again since X is sgp-T_c-space, G and H are open sets in X. As f is sgp-open function, f(G) and f(H) are sgp-open sets such that y_1 = f(x_1) \in f(G), y_2 = f(x_2) /∈ f(G) and y_1 = f(x_1) /∈ f(H), y_2 = f(x_2) \in f(H). Hence Y is sgp-T_1-space.

Theorem 3.11: If X is sgp-T_1-space and sgp-T_c-space and Y is subspace of X, then Y is sgp-T_1-space.

Proof: Let X be a sgp-T_1-space and Y be a subspace of X. Let a and b be two distinct points of Y. Since X is a sgp-T_1-space, there exist sgp-open sets G and H such that a \in G, b /∈ G and a /∈ H, b \in H. Again since X is sgp-T_c-space, G and H are open sets in X. Then Y \cap G and Y \cap H are open sets so sgp-open sets of Y such that a \in Y \cap G, b /∈ Y \cap G and a /∈ Y \cap H, b \in Y \cap H. Hence Y is sgp-T_1-space.
Theorem 3.12: If \(f: X \to Y \) is injective sgp-irresolute function from a topological space \(X \) into sgp-\(T_1 \)-space \(Y \), then \(X \) is sgp-\(T_1 \)-space.

Proof: Let \(a \) and \(b \) be two distinct points of \(X \). Since \(f \) is injective, \(f(a) \) and \(f(b) \) are distinct points of \(Y \). Since \(Y \) is sgp-\(T_1 \)-space, there exist sgp-open sets \(G \) and \(H \) such that \(f(a) \in G \), \(f(b) \not\in G \) and \(f(a) \not\in H \), \(f(b) \in H \). Again since \(f \) is sgp-irresolute, \(f^{-1}(G) \) and \(f^{-1}(H) \) are sgp-open sets in \(X \) such that \(a \in f^{-1}(G) \), \(b \not\in f^{-1}(G) \) and \(a \not\in f^{-1}(H) \), \(b \in f^{-1}(H) \). Hence \(X \) is sgp-\(T_1 \)-space.

Now, we definesgp-\(T_2 \)-space.

Definition 3.13: A topological space \(X \) is said to be sgp-\(T_2 \)-space if for any pair of distinct points \(a \) and \(b \) of \(X \), there exist sgp-open sets \(x \) and \(y \) such that \(a \in x \), \(b \in y \) and \(x \cap y = \emptyset \).

Example 3.14: Let \(X = \{a, b\} \) and \(\tau = \{\emptyset, \{a\}, \{b\}, X\} \). Then \((X, \tau)\) is a topological space. sgp-open sets are \(X \), \(\emptyset \), \(\{a\} \) and \(\{b\} \). Here \(a \) and \(b \) are two distinct points of \(X \), then their exist sgp-open sets \(\{a\}, \{b\} \) of \(X \) such that \(a \in \{a\}, b \in \{b\} \) and \(\{a\} \cap \{b\} = \emptyset \). Therefore \(X \) is sgp-\(T_2 \)-space.

Theorem 3.15: Every sgp-\(T_2 \)-space is sgp-\(T_1 \)-space.

Proof: Let \(X \) be a sgp-\(T_2 \)-space. Let \(x \) and \(y \) be two distinct points of \(X \). As \(X \) is sgp-\(T_2 \)-space, there exist sgp-open sets \(G \) and \(H \) such that \(x \in U \) and \(y \in V \). This implies, \(x \in U \), \(y \not\in U \) and \(x \not\in V \), \(y \in V \). Hence \(X \) is sgp-\(T_1 \)-space.

Theorem 3.16: If \(X \) is sgp-\(T_2 \)-space, sgp-\(T_c \)-space and \(Y \) is a subspace of \(X \), and then \(Y \) is also sgp-\(T_2 \)-space.

Proof: Let \(X \) be a sgp-\(T_2 \)-space and let \(Y \) be a subspace of \(X \). Let \(x \), \(y \) be two distinct points of \(Y \). Since \(Y \subseteq X \), \(x \), \(y \) are distinct points of \(X \). Again since \(X \) is sgp-\(T_2 \)-space, there exist disjoint sgp-open sets \(G \) and \(H \) of \(x \) and \(y \) respectively. As \(X \) is sgp-\(T_c \)-space, there exist disjoints sgp-open sets \(G \) and \(H \) are open sets. So \(G \cap Y \) and \(H \cap Y \) are open set and so sgp-open set in \(Y \). And also \(x \in G \), \(x \in Y \) implies \(x \in G \cap Y \) and \(y \in H \) and \(y \in Y \) which implies \(y \in Y \cap H \). Since \(G \cap H = \emptyset \) we have \((Y \cap G) \cap (Y \cap H) = \emptyset \). Thus \(G \cap Y \) and \(H \cap Y \) are disjoint sgp-open sets of \(x \) and \(y \) respectively. Hence \(Y \) is sgp-\(T_2 \)-space.

Theorem 3.17: If \(f: X \to Y \) is a bijective sgp-open function. If \(X \) is sgp-\(T_2 \)-space and sgp-\(T_c \)-space, then \(Y \) is also sgp-\(T_2 \)-space.

Proof: The proof follows from the Theorem 3.16.

Theorem 3.18: Let \(X \) be a topological space. Then \(X \) is sgp-\(T_2 \)-space if and only if the intersection of all sgp-closed neighborhood of each point of \(X \) is singleton.

Proof: Suppose \(X \) is sgp-\(T_2 \)-space. Let \(x \) and \(y \) be any two distinct points of \(X \). Since \(X \) is sgp-\(T_2 \)-space, there exist open sets \(G \) and \(H \) such that \(x \in G \), \(y \in H \) and \(G \cap H = \emptyset \). Since \(G \cap H = \emptyset \) implies \(x \in G \subseteq X - H \). So \(X - H \) is sgp-closed neighbourhood of \(x \), which does not contain \(y \). Thus \(y \) does not belong to the intersection of all sgp-closed neighbourhood of \(x \). Since \(y \) is arbitrary, the intersection of all sgp-closed neighbourhoods of \(x \) is the singleton \(\{x\} \).

Conversely, let \(\{x\} \) be the intersection of all sgp-closed neighbourhoods of an arbitrary point \(x \in X \). Let \(y \) be any point of \(X \) different from \(x \). Since \(y \) does not belong to the intersection, there
exists a sgp-closed neighbourhood N of x such that y \not\in N. Since N is sgp-neighbourhood of x, there exists a sgp-open set G such x \in G \subseteq X. Thus G and X – N are sgp-open sets such that x \in G, y \in X – N and G \cap (X – N) = \emptyset. Hence (X, \tau) is sgp-T_2-space.

Theorem 3.19: Let (X, \tau) be a topological space and let (Y, \sigma) be a sgp-T_2-space. Let f: (X, \tau) \to (Y, \sigma) be an injective sgp-irresolute map. Then (X, \tau) is sgp-T_2-space.

Proof: Let x_1 and x_2 be any two distinct points of X. Since f is injective, x_1 \neq x_2 implies f(x_1) \neq f(x_2). Let y_1 = f(x_1), y_2 = f(x_2) so that x_1 = f^\dagger(y_1), x_2 = f^\dagger(y_2). Then y_1, y_2 \in Y such that y_1 \neq y_2. Since (Y, \mu) is sgp-T_2-space, there exist sgp-open sets G and H such that y_1 \in G, y_2 \in G and G \cap H = \emptyset. As f is sgp-irresolute f^\dagger(G) and f^\dagger(H) are sgp-open sets of (X, \tau). Now f^\dagger(G) \cap f^\dagger(H) = f^\dagger(G \cap H) = f^\dagger(\emptyset) = \emptyset and y_1 \in G implies f^\dagger(y_1) \in f^\dagger(G) implies x_1 \in f^\dagger(G), y_2 \in H implies f^\dagger(y_2) = f^\dagger(H) implies x_2 \in f^{-1}(H). Thus for every pair of distinct points x_1, x_2 of X there exist disjoint sgp-open sets f^\dagger(G) and f^\dagger(H) such that x_1 \in f^\dagger(G), x_2 \in f^\dagger(H). Hence (X, \tau) is sgp-T_2-space.

4. NEW SEPARATION AXIOMS VIA sgp-OPEN SETS

Definition 4.1: Let X be a space. A subset A \subset X is called a sgp-Difference set (in short sgp-D-set) if there are two sgp-open sets U, V in X such that U \neq X and A = U \setminus V.

It is true that every sgp-open set U \neq X is a sgp-D-set since U = U \setminus \emptyset.

Definition 4.2: A space X is said to be

i. sgp-D_o if for x, y \in X containing x but not y or sgp-D-set containing y but not x.

ii. sgp-D_1 if for x, y \in X such that x \neq y there exists a sgp-D-set of X containing x but not y and a sgp-D-set containing y but not x.

iii. sgp-D_2 if for x, y \in X such that x \neq y there exists a disjoint sgp-D-sets G and E such that x \in G and y \in E.

Theorem 4.3: For a space X, the following properties hold:

i. If X is sgp-T_1, then it is sgp-T_{1-1} for i = 1,2

ii. If X is sgp-T_1, then it is sgp-D_i for i = 0,1,2

iii. If X is sgp-D_i, then it is sgp-D_{i-1} for i = 1,2

Proof: This is obvious from Definition 6.2

Theorem 4.4: For a space X, the following statements are true:

i. X is sgp-D_o if and only if X is sgp-T_o.

ii. sgp-D_1 if and only if X is sgp-D_2.

Proof: The sufficiency for (i) and (ii) follows from Theorem 4.3.

Necessity for (i). Let X be sgp-D_o so that for any pair of distinct points x and y of X at least one belongs to a sgp-D-set O. Therefore, we choose y \in O and y \notin O. Suppose O = U \setminus V for U \neq X and sgp-open sets U and V. This implies that x \in U. For the case that y \notin O we have (i) y \notin U, (ii) y \in U and y \notin V. For (i) the space X is sgp-T_o since x \in U and y \notin U.

For (ii), the space X is also sgp-T_o since y \in V but x \notin V.
Necessity for (ii): Suppose X is sgp-D₁. It follows from the definition that for any distinct points x and y in X there exists sgp-D-sets G and E such that G containing x but not y and E containing y but not x. Let G = U \ V and E = W \ D, where U, V, W and D are sgp-open. By the fact that x \in E, we have two cases, i.e. either x \notin W or both W and D contain x. If x \notin W, then from y \notin G either (i) y \notin U or (ii) y \in U and y \in V.

If (i) is the case, then it follows from x \in U \ V that x \in U \ (V \cup W) and also it follows from y \in W \ D that y \in W \ (U \cup D). Thus we have U \ (V \cup W) and W \ (U \cup D) which are disjoint.

If (ii) is the case, it follows from that x \in U \ V and y \in V since y \in U and y \in V. Therefore (U \cap V) \cap V = \emptyset. If x \in W and x \in D, we have y \in W \ D and x \in D. Hence (W \ D) \cap D = \emptyset.

This shows that X is sgp-D₂.

Corollary 4.5: If X is sgp-D₁, then it is sgp-T₀.

Theorem 4.6: If f \to Y is a sgp-irresolute surjective function and S is a sgp-D-set in Y, then f₁(S) is a sgp-D-set in X.

Proof: Let S be a sgp-D-set in Y. Then there are sgp-open sets U and V in Y such that S = U \ V and U \neq Y. By the sgp-irresolute of f, f₁(U) and f₁(V) are sgp-open sets in X. Since U \neq Y, we have f₁(U) \neq X. Hence f₁(S) = f₁(U) \ f₁(V) is a sgp-D-set in X.

Theorem 4.7: If Y is sgp-D₁ and f \to Y is a sgp-irresolute and bijective function, then X is sgp-D₁.

Proof: Suppose that Y is sgp-D₁ space. Let x and y be any pair of distinct points in X. Since f is injective and Y is sgp-D₁, there exist sgp-D-sets Sₓ and Sᵧ of S containing f(x) and f(y) respectively, such that f(y) \notin Sₓ. By the Theorem 4.6, f₁(Sₓ) and f₁(Sᵧ) are sgp-D-sets in X containing x and y respectively. This implies that X is a sgp-D₁ space.

Theorem 4.8: A space X is sgp-D₁ if and only if for each pair of distinct points x and y in X, there exists a sgp-irresolute surjective function f from X onto sgp-D₁ space Y such that f(x) \neq f(y).

Proof: Necessity: For every pair of distinct points of X it suffices to take the identity mapping on X.

Sufficiency: Let x and y be any pair of distinct points in X. By hypothesis, there exists a sgp-irresolute, surjective function f of a space X onto a sgp-D₁ space Y such that f(x) \neq f(y). Therefore, there exist disjoint sgp-D-sets Sₓ and Sᵧ in Y such that f(x) \in Sₓ and f(y) \in Sᵧ. Since f is sgp-irresolute and surjective, by Theorem 4.6, f₁(Sₓ) and f₁(Sᵧ) are disjoint sgp-D-sets in X containing x and y respectively. Hence by Theorem 6.4 (ii), X is a sgp-D₁ space.

5. REFERENCES

