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ABSTRACT 

Wireless sensor networks (WSNs) have stringent energy and computational requirements. 

Security has become very crucial issue with the widespread acceptance of the WSNs in 

numerous decision-critical and hostile environments. Since sensor nodes are left unattended, 

they can be compromised by adversaries to launch various application layer attacks. Effective 

countermeasures against these attacks can lead to improved security. A probabilistic voting-

based filtering scheme (PVFS) uses probabilistic filtering based on the distance to counter 

attacks of fabricated reports with false votes and real reports with false votes. Genetic 

algorithm-based filtering scheme (GAFS) uses a genetic algorithm with a fuzzy rule-based 

system that considers remaining energy and number of filtered votes in addition to the 

distance. The analysis results of the current study demonstrate the effectiveness of our scheme 

against these attacks in comparison with PVFS. The results show increased detection power 

achieved through effective verification while maintaining energy consumption. 
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1. INTRODUCTION

Wireless sensor networks (WSNs) have emerged as potential technologies to facilitate wireless 

communication for a variety of applications [1, 2]. These sensor network technologies enable the 

development of low-cost, low-power, and multi-functional sensors in hostile environments [3, 4]. 

A WSN comprises a large number of sensor nodes and a base station (BS) in a sensor field. The 

sensor nodes detect a real event in the densely deployed sensor field without an infrastructure [5, 

6]. The BS collects the events information from the sensor nodes for critical decision making. 

However, these nodes can be captured and compromised because they are left unattended. 
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Moreover, they have limited computation, memory, and energy supply capacities [7-10]. 

Malicious attackers can generate attacks with various patterns, resulting in reduced network 

lifetime. Potential attacks include (1) fabricated reports with false votes (FRFV) [6, 11-13] and 

(2) real reports with false votes (RRFV) [13-15], as shown in Fig. 1. A vote is defined as a 

message authentication code (MAC) [12, 13, 16]. A compromised node (Fig. 1(a)) can generate a 

FRFV attack (Fig. 1(b)) in the absence of a real event and send this report to the BS (Fig. 1(c)). 

The fabricated reports drain the nodes’ energy in a routing path (Fig. 1(d)). When the BS 

receives the fabricated report, a false alarm is generated. Another compromised node (Fig. 1(e)) 

can generate a RRFV attack (Fig. 1(f)) after injecting a false vote. The legitimate report is 

filtered out by an intermediate node due to an injected false vote, even though the report includes 

information about a real event. These attacks waste scarce energy and block the flow of the event 

reporting to the BS. 

 

 
Figure 1: Multiple attacks: FRFV and RRFV attacks 

 

Li et al. [13] proposed a probabilistic voting-based filtering scheme (PVFS) to detect these two 

attack types with en-route filtering. Verification nodes are selected using probabilistic decisions 

based on their distances (i.e., hop count). Although, it is possible to perform probabilistic 

optimization to select the verification nodes, the cost of verification node selection can be 

impractical for most sensor networks [6]. There are many optimization algorithms available; 

however, these algorithms require large amounts of energy and computation to determine the 

optimal solutions in a multi-parameter design space [17]. A genetic algorithm (GA) is a parallel 

and global search technique that emulates natural genetic operations [18] for effective problem 

solving. This algorithm is highly likely to converge on a global solution since it can 

simultaneously evaluate many points in the parameter space. It does not need to determine 

whether the search space is differentiable or continuous and can also iterate several times on 

each datum received [17]. 
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The genetic algorithm-based filtering scheme (GAFS) uses a GA with a fuzzy rule-based system 

to effectively select verification nodes in order to improve detection power against these attacks. 

In order to choose the verification node, every intermediate cluster head (CH) is evaluated by the 

fuzzy rule-based system [14, 15, 19], which considers remaining energy, number of filtered false 

votes, and hop counts. The GAFS then performs a ranking selection, a one-point crossover, and a 

bit flip mutation operation. Our experimental results validate the effectiveness of the proposed 

scheme to improve security of the WSN by increasing detection power. 

 

The rest of this paper is organized as follows. The background and motivation of this study are 

described in Section 2. We introduce the details of the GAFS in Section 3. Section 4 provides the 

analysis and results. We present the related works in Section 5. Conclusions and future work are 

discussed at the end of this paper. 

 

2. BACKGROUND AND MOTIVATION  

 

This section presents overview of the PVFS countermeasure against FRFV and RRFV attacks, as 

well as the motivation behind GAFS. 

 

2.1.PROBABILISTIC VOTING-BASED FILTERING SCHEME (PVFS) 

 

The PVFS was proposed to detect FRFV and RRFV attacks in a sensor network. This scheme is 

suitable for filtering in a cluster-based model. This scheme deploys a CH with L nodes within 

each cluster. The CH receives votes from sensor nodes in the cluster, then randomly selects votes 

and attaches them to a report. The scheme counters fabricated votes to detect the attacks when 

forwarding a report. The PVFS has three phases: (1) key initialization and assignment, (2) report 

generation, and (3) en-route filtering. In the key assignment phase, every node receives a key 

from a partition of a global key pool at the BS. Each of the source CHs selects verification nodes 

using a probability calculated based on hop counts from the intermediate CHs to the BS. Each of 

the source CHs randomly distributes a key from the cluster’s nodes to all verification nodes in 

the path. Report generation and en-route filtering phases are illustrated in Fig. 2 and 3 against the 

FRFV and RRFV attacks, respectively. 

 

 
Figure 2:  Detection of a FRFV attack 
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Fig. 2 shows the detection of a FRFV attack in the phases of report generation (Fig. 2 (a)) and 

en-route filtering (Fig. 2 (b)). A source CH0 (Fig. 2 (c)) is compromised to inject false reports. 

We consider 𝑠 = 3 (𝑠 is the required number of votes for a legitimate report) and 𝑇𝑓 = 2 (𝑇𝑓 is 

the threshold of false votes required to drop a report). In addition, the verification nodes CH1 and 

CH2 are chosen among the intermediate CHs using a probability at each of them based on their 

hop counts. The probability is 𝑃 = 𝑑𝑖 𝑑0⁄  (𝑑𝑖 is the distance from CHi to the BS; 0d is the 

distance from CH0 to the BS). That is, the probabilities at the intermediate CHs are 𝑃1 = 3 4⁄ , 

, 𝑃1 = 2 4 ⁄ , and 𝑃1 = 1 4 ⁄ , respectively. In Fig. 2 (a), if CH0 fabricates a report about a non-

existing event, it injects two false votes using the captured keys K65 and K97 and attaches the 

votes to the fabricated report (Fig. 2 (d)). When the fabricated report arrives at CH1, it detects a 

false vote using K97. The fabricated report is transmitted to CH2 since 𝑇𝑓 = 2 has not yet been 

reached. CH2 also detects the second false vote using K65, and the fabricated report is dropped 

against the FRFV attack because 𝑇𝑓 = 2 has been reached. 

 

 
Figure 3:  Detection of a FRFV attack 

 

Fig. 3 illustrates the RRFV attack detection. A cluster of a source CH0 has nine normal nodes (

9=L ), including a compromised node (Fig. 3 (c)). After collecting all of the votes from the 

normal nodes, CH0 randomly selects three votes (𝑠 = 3) including a false vote to attach to a real 

report (Fig. 3 (d)). After verifying the vote using K77 in CH1, the real report is forwarded to CH2. 

CH2 then detects the false vote through K26 and continually transmits the report to CH3 in 

response to the RRFV attack because  𝑇𝑓 = 2 has not been reached. The legitimate report then 

arrives safely at the BS. 

 

The PVFS drops the forged reports that the FRFV attack generated in the verification nodes 

during the forwarding process as the threshold is reached. The PVFS also detects the RRFV 

attack prior to reaching the threshold, and legitimate reports are transmitted to the intermediate 

CHs. Therefore, the PVFS simultaneously prevents the FRFV and RRFV attacks after verifying 

votes in the selected verification nodes. 

 

2.2.MOTIVATION 

 

FRFV attacks limit the WSN lifetime, and RRFV attacks results in blocking the flow of the event 

reporting to the BS. In the FRFV attacks, a fabricated report is injected with false votes, 
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consuming unnecessary energy at each of the sensor nodes as it is forwarded via intermediate 

CHs to the BS. In the RRFV attacks, a legitimate report is generated with false votes, filtering 

out the real report at the verification nodes as it is forwarded to the next node. The PVFS can 

detect these attacks at the verification nodes before they reach the BS. The verification nodes are 

probabilistically selected according to hop count from the BS. 

 

In the GAFS, we consider a vast search space for effective selection of verification nodes. When 

a source CH determines the selection of the verification nodes using the probability at each of n 

hops, it has 2
n-1

 cases for selection. For example, if there are 11 hops in a path, a source CH 

generates 1,024 cases. In order to find the most effective case, we propose the use of global 

optimization, rather than local optimization, to select the most effective verification nodes. 

 

For evaluation of intermediate CHs using fuzzy rule-based systems, we consider three factors: 

(1) remaining energy level, (2) number of filtered false votes, and (3) hop counts. This enables us 

to effectively identify the verification nodes using a GA. Even though the PVFS selects the 

verification nodes using a probabilistic decision-making process that is based solely on hop 

counts, the GAFS determines the effective verification nodes using a GA with the fuzzy rule-

based system. These factors are subsequently evaluated on every hop in order to determine the 

most effective solution, according to the fuzzy system, using the GA. After determining the 

global optimization for selecting the verification nodes using the GA with the fuzzy logic 

system, the GAFS demonstrated increased detection power with early detection of the FRFV and 

RRFV attacks, compared to the PVFS. 

 

3. PROPOSED METHOD  

 

This section describes the network model and the assumptions in Section 3.1, the scheme details 

in Section 3.2, and analytical examples of the GAFS in Section 3.3. 

 

3.1. ASSUMPTIONS 

 

The sensor nodes hold fixed positions after their deployment in the sensor field. The sensor 

network is comprised of a BS and a number of sensor nodes, e.g., Berkeley MICAz motes [20]. 

The initial paths are established through directed diffusion [21]. We use a cluster-based model 

[13, 22] to organize the sensor nodes for message communication. In this model, one node in 

each cluster is elected to be a CH. A CH is assumed to be more powerful than the normal nodes 

in terms of transmission range, memory size, computation, and battery power [6, 13, 14]. Since a 

CH has sufficient resources, we do not consider memory size for the GA based computation. 

Moreover, each CH selects a routing path based on hop counts from the BS to the CH. We 

further assume that every CH forwards reports to the BS using this path. The FRFV and RRFA 

attacks are generated to drain energy of sensor nodes and block the flow of the event reporting to 

the BS. We consider bidirectional communication paths (i.e., if node A can communicate to node 

B, then node B can also communicate to node A). The key assignment is achieved by using keys 

from global key pool of the BS. In this paper, we only consider the FRFV and RRFA attacks 

from multiple compromised nodes. 
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3.2.SCHEME DETAILS 

 

In this section, a detailed description of the GAFS is presented. Section 3.3.1 gives an overview 

of the proposed scheme. An initial population is formulated to extract the best individual using 

the GA in Section 3.3.2. A detailed description of the fitness function using the fuzzy logic 

system is illustrated with this population in Section 3.3.3. The design of the GA with the fuzzy 

rule-based fitness function is presented in Section 3.2.4. 

 

3.2.1. SCHEME DETAILS 

 

The GAFS effectively selects verification nodes using a GA based on a fuzzy rule-based system 

to detect the FRFV and RRFA attacks. The GA maintains a population of individuals (i.e., 

chromosomes) in which each individual represents a potential solution to the problem at hand. 

The population is implemented as parts of the data structure [17]. Each solution is evaluated to 

measure its fitness, which indicates how close it is to the optimal solution [14]. The CH evaluates 

every intermediate CH according to the fuzzy system using three factors: (1) remaining energy 

level, (2) number of filtered false votes, and (3) hop counts in order to select the verification 

nodes through the GA. 

 

 
Figure 4:  Overview of the GAFS 

 

Error! Reference source not found. illustrates the selection of the verification nodes using the 

GA. A source CH generates eight individuals (i.e., I1–I8) in a path without duplicating the binary 

codes (i.e., 0, 1). The GAFS selects the two individuals (i.e., I5 and I8) with the highest fitness 

values using a ranking selection. Then, the two selected individuals produce a new offspring 

through a one-point crossover. The offspring may be mutated at a defined probability. Next, the 

fitness of the offspring is compared to the minimum fitness among the eight individuals in order 

to replace the minimum fitness after mutation. These phases are repeated ten times to determine 

the most effective individual. The source CH selects verification nodes according to the best 

individual after finishing the GA execution. Therefore, the GAFS selects the most effective 

verification nodes after evaluating the intermediate CHs using the GA according to the fuzzy 

rule-based system. 
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3.2.2. SCHEME DETAILS 

 

The GAFS can dynamically adapt to the network conditions based on the three factors 

considered for evaluation of intermediate CHs. After executing the GA, the proposed scheme 

effectively selects verification nodes based on the highest fitness value of an individual. 

 

 
Figure 5:  Example of an individual routing path 

 

Fig. 5 illustrates an individual in a routing path from CH0 to the BS. All genes are always 

reserved for intermediate CHs (CH1-CH10). A gene is composed of a binary value generated by 

the probability 0/= ddP i . The genes of the intermediate CHs represent either 1 or 0 in a binary 

code based on their hop counts. The binary code of each individual is generated using probability 

without duplication, as in the selection of a verification node in the PVFS. The binary length of 

the individual is dynamically based on the hop counts. 

 

3.2.3. FITNESS FUNCTION USING FUZZY LOGIC 

 

In the GA, the evaluation phase is implemented in our scheme by using the fuzzy logic system. 

We use the factors of remaining energy level (EL), and number of filtered false votes (FV), and 

hop count (HC) to effectively select verification nodes. The EL is a key parameter because each 

sensor has limited energy. If the intermediate CH has a higher level of energy, it is more likely to 

be selected as a verification node for authentication than are the CHs with low energy levels. 

However, if the remaining energy level is low, an intermediate CH transmits the report to the 

next CH without authentication. The FV is most important in terms of security. If the frequency 

of the FRFV and RRFV attacks is high, more verification CHs can be selected to increase the 

detection power. If the frequency of the attacks is low, fewer verification CHs can be selected in 

order to reduce energy consumption. The HC is another important input. If this value is large, the 

number of verification nodes can be increased close to a source CH to improve early detection. If 

the HC value is small, intermediate CHs can forward the reports instead of acting as verification 

nodes in order to decrease energy consumption at the BS. 
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Figure 6:  Fitness function using a fuzzy rule-based system 

 

Fig. 6 shows the fitness function containing: (a) the fuzzy if-then rules, (b) the fuzzy membership 

functions, and (c) the fuzzy result. We define the fitness function using the fuzzy rule-based 

system in order to more accurately evaluate each individual. When a gene is assigned to a CH 

with a binary value of 1, the verification node of the gene is evaluated. The input factors for 

fuzzy inference are EL, FV, and HC, and the output factor is the fitness threshold (FT). The 

labels of the fuzzy variables are as follows: 

 EL = {LW (Low), MD (Medium), SF (Sufficient)} 

 FV = {LW (Low), MD (Medium), HG (High)} 

 HC = {NR (Near), MD (Middle), FR (Far)} 

These labels represent the fitness threshold as follows: 

 FT = {VS (Very Small), SM (Small), MD (Medium), LG (Large), VL (Very Large)} 

In the fuzzy if-then rules, three input factors with three labels each were used to obtain a total of 

27 ( 333  ) rules based on the analysis and experimental results.  
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Figure 7:  Fitness Function Results 

 

Fig. 7 shows the fitness results for the eight individuals evaluated using the fitness function. For 

(a), the population, the source CH selects the sizes of the individuals according to hop count, and 

binary codes are generated for each gene in the individual. For (b), the fitness function, each 

gene is evaluated according to the fuzzy membership function. For (c), fitness, each individual 

has a total fitness of its genes evaluated as 1 for its ranking selection. 

 

3.2.4. DESIGN OF THE GENETIC ALGORITHM 

 

Fig. 8 represents the five phases of the GA: (a) ranking selection, (b) one-point crossover, (c) flip 

bit mutation, (d) fitness function, and (e) the replacement and ranking selection. As shown in 

phase (a), the ranking selection is used to improve the quality of the population. In the ranking 

selection phase, the two individuals with the highest fitness are chosen for crossover. As shown 

in phase (b), the selected individuals are examined during crossover to identify the one with the 

greatest fitness. A one-point crossover then generates an offspring in order to improve the fitness 

value. The one-point crossover is a random number between 0 and n (i.e., hop count). Individuals 

I2 and I8 interact to generate the offspring based on a random number. In phase (c), mutation is 

required to avoid a local optimum. In order to solve this problem, we set the flip bit mutation rate 

to 1%, which is an extremely low probability. The binary code of a gene was inverted in the 

offspring generated between 0 and n to produce the new offspring. The fitness function 

accurately measures offspring quality in phase (d). In phase (e), the fitness of the new offspring is 

then compared to the minimum fitness result in order to update the minimum fitness. The five 

phases are repeated ten times in order to produce the most effective individual based on the three 

input factors. Subsequently, CH0 selects the individual with the highest fitness value among the 

eight individuals to determine the effective verification nodes. 
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Figure 8:  Design of the GA 

 

3.3.ANALYTICAL EXAMPLE 

 

 
Figure 9:  Verification nodes of the PVFS and GAFS 

 

Figure 9 depicts how the PVFS (Fig. 9 (a)) and the GAFS (Fig. 9 (b)) select verification nodes. 

As shown in Fig 9 (a), CH10 selects the verification nodes using the probability values of 

intermediate CHs in the key initialization and assignment phase. CHs 11, 12, 13, 14, and 15 have 

probability values of 6/5=11P , 6/4=12P , 6/313 P , 6/2=14P , and 6/1=15P , respectively. CHs 11, 

13, and 14 are thus fixed as the verification nodes based on only hop counts. In the GAFS (Fig. 9 

(b)), CH0 selects the verification nodes using a GA, according to the network conditions. The 

fitness of each CH in a path is computed according to the fuzzy rule-based system based on the 

three factors. CH0 identifies the effective verification nodes after executing five phases, as shown 

in Figure 8, and chooses CH1, CH2, and CH3 to improve the detection power. 
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4. SIMULATION ANALYSIS  

 

In this section, cost analysis and experimental results are described in detail in Sections 4.1 and 

4.2, respectively. 

 

4.1.COST ANALYSIS 

 

This section describes the energy consumption cost analysis using the GA with the fuzzy rule-

based system in a source CH. As discussed in Section 3.2.3, a total of 27 rules in the fuzzy rule-

based system are evaluated for each individual in the GAFS. Furthermore, for the GA, three 

algorithms (ranking selection, one-point crossover, and flip bit mutation) are executed. A cost 

analysis comparison for the GA with the fuzzy rule-based system and vote verification is 

summarized in Table 1. 

 
Table 1:  Cost analysis comparison 

 GA with fuzzy system Vote verification 

Addition 

Operations 
8,640 operations/10 times 3,520 operations/a vote 

Energy 

Consumption 
183.75 µJ 75 µJ 

 

In the above table, an evaluation is performed for the fuzzy rule-based system according to the 

standard additive model [19]. For the expression of the standard additive model in the fuzzy rule-

based system, the number of multiplication operations, which is equivalent to twice the 

calculations using addition operations, is 378 (=(27×4+27×3)×2), and the number of addition 

operations is 54 (27×2). Thus, the total number of operations is 432. For the GA, the ranking 

selection for the eight individuals executes 96 operations based on [23], a one-point crossover for 

two individuals executes 70 operations, and a bit flip mutation for one individual executes 50 

operations. Because two-byte words are standard, the GA executes 864 operations. Therefore, 

the total number of addition operations for the GA with the fuzzy rule-based system is 8,640 

over10 times, which is equal to 183.75 µJ. 

 

In contrast, a one-vote verification computes messages that are split into 44 bytes in a keyed-

hash message authentication code (HMAC) [16] as a hash function is operated. The total number 

of addition operations is 80. The total number of operations for two-byte words and the hash 

function is 3,520 (=80×2×44/2) which is equal to 75 µJ. 

 

The GA computation is approximately 245% greater than the vote verification. The GA with the 

fuzzy rule-based system computation consumes more energy than the vote verification. 

However, the frequency of the vote verifications (for s=5, 5×75=375µJ) is higher than the 

execution of the GA with the fuzzy rule-based system (183.75 µJ) that is used to select 

verification nodes. Therefore, the use of the GA with the fuzzy rule-based system is feasible on a 

CH. 
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4.2.EXPERIMENTAL RESULTS 

 

The simulation experiment is performed to evaluate the GAFS and compare it with the PVFS. 

The experimental environment has a field size of 2000×2000 m
2
. Each cluster in this field has a 

size of 100×100 m
2 

consisting of one CH and nine randomly deployed nodes. The compromised 

nodes generate FRFV and RRFV attacks using false votes corresponding to the false traffic ratio 

(FTR) relative to the total number of events. For this simulation, the energy consumption model 

in Ye et al. [1] is used. Each node uses 16.25 µJ/byte to transmit data and 12.5 µJ/byte to receive 

data, each vote generation consumes 15 µJ/byte, and one vote verification consumes 75 µJ/byte. 

The size of each report is 24 bytes, and the size of a single vote is 1 byte. In the comparative 

analysis, the required number of votes for a report is 5,s   and the threshold of false votes is

2fT . For example, when an event occurs in a cluster, a CH selects five votes to be attached to a 

report. Then, if the verification node detects two false votes out of these five votes, then it drops 

the report. The design parameters α is the ratio of the attacks per legitimate reports, which is 

predefined in the initialization phase. 

 

  
(a) FRFV with compromised nodes=6 (b) FRFV with compromised nodes=10 

Figure 10: Defense ratio against an FRFV attack with compromised nodes=6 and 10 

 

Fig. 10 compares the GAFS with the PVFS for their percentages of dropped fabricated reports 

against FRFV attacks for two different values of design parameter α for the GAFS. In case (a), 

the GAFS (α=0.1) successfully dropped an average of 80% of the fabricated reports while the 

PVFS averaged 45%. In case (b), the number of compromised nodes increased from 6 to 10. It is 

observed that, with a larger number of compromised nodes, the performance difference between 

the two schemes decreases. However the performance of the GAFS (77% for α=0.1) is still better 

than that of the PVFS (62%). We also note that, for α=0.1, the detection power is more than for 

α=0.2. This is because, for lower α, the GA is executed more times to effectively select the 

verification nodes. 
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(a) FRFV with compromised nodes=6 (b) FRFV with compromised nodes=10 

Figure 11: Detection of FRIA and FVIA 

 

Fig. 11 compares the GAFS with the PVFS for their percentages of detected fabricated votes in 

reports against RRFV attacks for two different values of α for GAFS. In case (a), the GAFS 

(α=0.1 and 0.2) and the PVFS show similar performances for the detection power; however, the 

GAFS (95% for α=0.1) performs better than the PVFS (93%). In case (b), the GAFS (93% for 

α=0.1) is still better than the PVFS (87%). 

 

  
(a) FRFV with compromised nodes=6 (b) FRFV with compromised nodes=10 

Figure 12: Average number of dropped fabricated reports that traveled within four hops 

 

Fig. 12 shows the average number of dropped fabricated reports that traveled within four hops 

for different values of FTR. We measured how early the filtered reports could be dropped after 

FRFV attacks are generated. In case (a), the GAFS (α=0.1) performs significantly better with 

increased FTR by dropping more fabricated reports. In case (b), as we increase the number of 

compromised nodes to 10, the GAFS performs better, although the performance difference is 

small. Therefore, the GAFS improves the early detection power for the detection of fabricated 

reports against FRFV attacks, compared to the PVFS. 
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(a) FRFV with compromised nodes=6 (b) FRFV with compromised nodes=10 
Figure 13: Average number of filtered votes that traveled within four hops 

 

Fig. 13 shows the average number of detected fabricated votes in a report within four hops of 

compromised nodes. In this figure, we focus on early detection against RRFV attacks. In case 

(a), the GAFS (α=0.1 and 0.2) and the PVFS performances are very similar. In case (b), after 

increasing the number of compromised nodes, the GAFS (α=0.1 and 0.2) performs better than 

the PVFS for early detection of fabricated votes in RRFV attacks. 

 

  
(a) Energy consumption with compromised nodes=6 (b) Energy consumption with compromised nodes=10 

Figure 13 Average number of filtered votes that traveled within four hops 

 

Fig. 14 shows the network-level energy consumption for different numbers of compromised 

nodes against FRFV and RRFV attacks. In case (a), the GAFS (α=0.1 and 0.2) and the PVFS 

performances are similar for energy consumption when there are 6 compromised nodes. In case 

(b), the GAFS saves more energy than the PVFS when subjected to attacks in the presence of 10 

compromised nodes. Therefore, the GAFS demonstrates improved detection power while it does 

not incur more energy consumption than the PVFS. 

 

5. RELATED WORKS  

 

In the past decade, a number of research papers have addressed sensor network security by using 

en-route filtering to detect and drop attacks. These proposals (such as SEF [12], IHA [24], and 

KIF [25]) differ in terms of energy efficiency, en-route detection power, and early detection 

power [11]. Yu et al. [12] presented statistical en-route filtering (SEF) to probabilistically detect 

false reports after receiving MACs from neighbors during the events generation. Zhu et al. [24], 
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proposed interleaved hop-by-hop authentication (IHA) to guarantee that the BS will detect false 

reports when t nodes (security threshold) are compromised. Lee et al. [25] proposed key 

inheritance-based filtering (KIF), which prevents forwarding of false reports to subsequent 

nodes. 

 

In [11], the adaptive selection of filtering (ASF) scheme was proposed, in which three schemes, 

SEF, IHA, and KIF, are loaded on each of the nodes. The BS periodically computes fitness 

values to select one of the schemes depending on network conditions by using a fuzzy rule-based 

system. The algorithms then forward and confirm legitimate reports based on the selected 

scheme. In [14], a GA-based membership function optimizer for fuzzy adaptive filtering 

(GAOFF) was presented. The efficiency of the membership functions was measured based on the 

simulation results and was optimized by the GA. GAOFF improved the energy efficiency, en-

route detection power, and early detection power using GA and a fuzzy rule-based system. All of 

these proposed methods (SEF, IHA, KIF, ASF, and GAOFF) are guaranteed to effectively detect 

only FRFV attacks in a sensor network. 

 

6. CONCLUSION AND FUTURE WORK  

 

An adversary can seriously harm sensor networks by launching complex attacks such as FRFV 

and RRFV attacks. Such attacks, which are generated at the application layer, increase 

unnecessary energy consumption and inhibit the flow of event reporting. In the GAFS, the GA 

with the fuzzy rule-based system demonstrated its ability to effectively select verification nodes 

based on the remaining energy, the number of false votes, and the hop counts. A source CH used 

the GA to extract the best individual among eight individuals. Experimental results demonstrate 

the effectiveness of our proposed method with increased detection power as compared with the 

PVFS while maintaining the energy consumption. Therefore, our proposed method offers an 

effective solution capable of providing global optimization [14, 26]. 

 

In this paper, the GAFS resulted in the following contributions: 

 Increased detection power 

 Early detection 

 Global optimization   

In future work, we will evaluate the performance of our proposed method against other types of 

attacks. 
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